Computational Challenges of Global Astrometry

B. Bucciarelli INAF-OATo

Outline

- Objectives of Astrometry
- Global Space Astrometry (HIPPARCOS & Gaia)
- The Sphere Solution in the Gaia Mission
- Analysis of Astrometric Signatures

Objectives of Astrometry

- Study of motion of celestial objects through space with direct impact on several branches of astronomy and fundamental physics
	- Solar System (accurate modeling of planetary motions \rightarrow Solar system exploration)
	- Milky Way Galaxy (kinematics, dynamics, Galaxy models constraints)
	- Cosmology (extragalactic proper motion signatures \rightarrow primordial GW)
	- Gravitational Theories (tests of γ and β PPN parameters, tests of Equivalence Principle)
- Basic Observation
	- Measurement of angles between incoming light from celestial sources
- Methods
	- Small-Field-of-View $(l°)$
	- Large-Field-of-View (few degrees)
	- Global Astrometry (all sky, only from space)

Global Space Astrometry

Principles

- Continously scanning telescope \rightarrow positional information given by timing data
- Simultaneous observation of stars separated by large angles \rightarrow absolute parallaxes
- The observation time is translated into a position of the star relative to the satellite axes
	- Along scan (AL) more important \rightarrow tolerance on across (AC) measurement ~100 times more relaxed

- A very large number of observation times are used to reconstruct an accurate celestial network, which involves also the modeling of satellite instrument and attitude
- The goal is to realize an astrometric catalog such that the angular separation ϑ between any two objects can be computed with an uncertainy which is essentially independent on ϑ
- Such a catalog defines an *undistorted reference frame*
	- It can however be rotating \rightarrow can be made quasi-inertial using extragalactic objects (quasars)

Global Space Astrometry

The 5-parameter model

- α_0 , δ_0 direction on the celestial sphere at the catalog reference epoch
- $\mu_{\alpha}, \mu_{\delta}$ proper motions $(\frac{d\alpha}{dt}, \frac{d\delta}{dt})$ along α and δ
- ϖ parallax

The stellar parallax

- Yearly apparent displacement due to the Earth's motion around the Sun
	- the star describes an apparent ellipse in the sky
	- the semi-major axis of this ellipse is the

trigonometric parallax $\ket{\varpi}$

• Funciontally related to the star's distance from the Sun

$$
D = \frac{1}{\varpi}
$$

where $\bar{\omega}$ is expressed in arcseconds, and *D* in parsecs (1 parsec = 206265 Astronomical Units)

Global Space Astrometry

Relative versus Absolute Parallax

- Relative parallaxes (from ground measurements) are referred to background reference stars
- Absolute parallaxes can be determined from simultaneus measurements of stars separated by large angles \rightarrow only from space
- Absolute (trigonometric) parallaxes are a proxy for stellar distances

• Direct distance calibrators

ESA HIPPARCOS Mission

- First space satellite dedicated to astrometry (Launch Aug 1989-End operations Aug 1993)
	- Scanning satellite, simultaneously observing two 0.9°x0.9° FOVs 58° apart by means of a double-mirror beam combiner
	- Incoming star light modulated by grid slits perpendicular to scan direction and sampled by an image-dissector tube photomultipler
- Goal: 5 astrometric parameters of \sim 120,000 primary stars up to mag \sim 12 with precision of \sim 2-4 milli-arcseconds
- Data reduction (FAST & NDAC Consortia) was a formidable problem at the time:
	- \sim 370,000 stellar unknowns and \sim 2M calibration parameters (attitude+istrumental)
	- Direct solution by elimination of stellar unknowns would have required $\sim n^3/3 = 10^{16}$ flops, plus the administration of $\sim n^2/2=6$ 10¹⁰ double-precision reals (~ 500 GB)
- The so-called 3-step method (devised by L. Lindegren) allowed to meet the available computer resources
	- The core step was the Sphere Solution, which determined the 5 astrometric parameters of PRINGRY MIRROR all the primary stars starting from their abscissae estimated from the **COMBINER** great-circle reduction step.
	- The sphere system dimensions were \sim 400,000 unknowns and \sim 2M observation equations

FLAT FOLDING MIRROR

HIPPARCOS GRID

 29

RAFFLE APERTUR

ESA HIPPARCOS Mission

- Numerical Approach to Sphere Solution in FAST (Galligani et al. 1989)
	- Two basic procedures were developed:
		- 2x2 block Cholesky factorization by considering the splitting of the normal matrix
		- computationally more expensive

Condition matrix (MxN)

N=number of unknowns M=number of observations

- Gradient-type iterative method LSQR (based on Lanczos bidiagonalization algorithm)
	- Works well on sparse matrices
	- More flexible to small model changes
	- Computationally less expensive $(15M+7N)*k$ [k=number of iterations]
	- Vectorial optimization of the initial code was performed on CRAY X-MP/12 @CINECA

ESA Gaia Mission

- Launched on Dec 2013 in a Lissajous-type orbit around lagrangian point L2 (1.5M Km from Earth)
- Conducting an optical all-sky survey to magnitude 20 (\sim 1% of Galaxy stellar content)
- Observing principles based on predecessor HIPPARCOS but 3 order of magnitude more accurate
	- Spacecraft slowly rotating at angular rate of 1° per minute
	- Spin axis slowly precesses around Sun direction with 63-day period
	- Full sky coverage obtained every 3 months
- Focal plane assembly largest ever developed for space applications
	- 106 CCDs $4500x1966$ px² each (total of \sim 1000M), 1x0.4m² physical dimension
	- $10x30$ micron² pixel size
	- CCD operate in Time Delay Integration (TDI) mode
		- Photoelectrons are clocked across CCD together with moving star Gaia field transits (ICRS) for 5 years image

Gaia Astrometric Observation

- The astrometric observation is the precisely estimated instant when the star image center crosses the nominal CCD 'observation line'
- The timing observations provide accurate $(\sim 0.1$ to 1 milliarcsecond) information about the instantaneous relative along-scan position of the observed objects

Gaia Sphere Solution (1)

- Stars' along-scan measurements create a geodetic-like network on the celestial sphere
- Problem dimensions:
	- $\sim 10^8$ primary stars, each observed ~80 times in 5 yr, i.e. ~720 CCD transits, a total of 7.2 10¹⁰ observations.
	- Number of stellar parameters $5\ 10^8$
	- Number of attitude parameters to be estimated for a 5-yr mission is $\sim 4 \, 10^7$
	- Number of instrumental calibration parameters \sim 10 $\,6$
- General form of minization problem:

$\min_{(S, n)} ||f^{\text{obs}} - f(s, n)||$

- **s** = vector of unknown stellar parameters describing their barycentric (Sun centered) motion
- **n** = vector of «nuisance parameters» describing the instrument
- **fobs** = vector of the observations
- **f(s,n)** = observation model, i.e., expected detector coordinates calculated as function of astrometric and nuisance parameters

Gaia's multiple scans

Scan width = $0.\overline{7}$ °

Gaia Sphere Solution (2)

• The minimization problem corresponds to the least-squares solution of the overdetermined system of equations

$$
f_l^{obs} = f_l(s_i, n_j) \quad l = 1, ..., n. \text{ of observations}
$$

- index *i* indicates the stellar source, index *j* indicates the set of nuisance parameters
- The *f* function is highly non-linear, but initial errors in **s a**nd **n** are small
	- second-order terms of linearized equation typically less than 10^{-12} rad \sim 0.2 micro-arcseconds) \rightarrow negligible compared with single-observation noise
- The observation equation is conveniently linearized around suitable initial values:

$$
f_l^{obs} - f_l^{calc} = \frac{\partial f_l}{\partial s_i} \mathbf{x}_{si} + \frac{\partial f_l}{\partial \mathbf{n}_j} \mathbf{x}_{nj}
$$

• The weighed least-squares system is formed multiplying each equation by the square root of its statistical weight (the inverse of its standard deviation)

Gaia sphere solution : matrix structure

- Considering for simplicity only stellar **s** and attitude **a** unknowns, the linearized system of equations in matrix notation reads $O**x** = **b**$, $$
	- sorting observations by the **n** stellar sources one gets a block angular matrix

$$
\begin{bmatrix} S_1 & 0 & 0 \ 0 & \ddots & 0 \ 0 & 0 & S_n \end{bmatrix} \begin{bmatrix} A_1 \\ \vdots \\ A_n \end{bmatrix} \begin{pmatrix} x_{s1} \\ \vdots \\ x_{sn} \end{pmatrix} = \begin{pmatrix} b_{s1} \\ \vdots \\ b_{sn} \end{pmatrix}
$$

with block dimensions

$$
\mathbf{S}_i(o_{si} \times 5)
$$
, $\mathbf{A}_i(o_{si} \times m)$ and $\mathbf{x}_{si}(5 \times 1)$, $\mathbf{x}_a(m \times 1)$, $\mathbf{b}_{si}(o_{si} \times 1)$

where o_{si} is the number of observations of the i-th source and *m* is the number of attitude parameters

- *S_i* are full matrices, while A_i are very sparse with $[A_i]_{\alpha\beta} \neq 0$ only if the α th observation of source i is linked to the β th attitude parameter.
	- Each source observed relative to large number of other sources simultaneously in the two FOVs, linked togheter by the attitude (and calibration) model \rightarrow strong connectivity of matrix structure \rightarrow does not allow sequential processing

Gaia sphere solution : computational complexity

- Sparseness structure of condition matrix *O* directly related to the choice of spline function representing the Gaia satellite attitude:
	- piecewise polynomial function written as linear combination of B-splines of order M=4 (cubic) defined on a sequence of M+1 time knots
- At any observing time t_i there are only 4 non-zero cubic B-splines, and the associated spline coefficients to be estimated are $a_{i-M+1}, a_{i-M+2}, ..., a_{i}$
	- the sub-vectors *aj* consist of 3M scalar values, i.e., M spline coefficients for each of the three orientation angles of the satellite axes.
- The observation equation for different sky sources (sub-vectors s_i) may refer to the same attitude sub-vectors *aj*

Fill factors (fraction of non-zero elements)

- Sub-matrix *A* fill factor 3M/m=12/m (m=n. of attitude params)
- Full matrix *O* fill factor (5+3M)/(5n+m), with $n=10^8$, $m=4$ 10⁷, $M=4$ \rightarrow fill factor of $O \sim 2$ 10⁻⁸

Gaia sphere solution : numerical approach

• The least-squares normal equations are $\ O^T O \pmb{x} = O^T \pmb{b}$ ($O^T O \equiv N)$ with solution $\ \pmb{x} = (O^T O)^{-1} O^T \pmb{b}$ and structure of the normal matrix *N* of dimension *(5n+m)*:

$$
\begin{bmatrix}\nS_1^T S_1 & 0 & \dots & 0 & S_1^T A_1 \\
0 & S_2^T S_2 & \dots & 0 & S_2^T A_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \dots & S_n^T S_n & S_n^T A_n \\
A_1^T S_1 & A_2^T S_2 & \dots & A_n^T S_n \sum A_i^T A_i\n\end{bmatrix}\n\begin{bmatrix}\n\mathbf{x}_{s1} \\
\mathbf{x}_{s2} \\
\vdots \\
\mathbf{x}_{sn} \\
\mathbf{x}_a\n\end{bmatrix} = \n\begin{bmatrix}\nS_1^T \mathbf{b}_{s1} \\
S_2^T \mathbf{b}_{s2} \\
\vdots \\
S_n^T \mathbf{b}_{sn} \\
\sum A_i^T \mathbf{b}_{si}\n\end{bmatrix}
$$

Matrix *N* has a doubly bordered block diagonal form, with a block size of 5 and border width *m*

- the dimension of the sub-matrices are $S_i^T S_i$ (5x5), $S_i^T A_i$ (5xm), $\sum_i A_i^T A_i$ (mxm)
- the fill factor of *N* is \sim (310)/n \rightarrow 3 10⁻⁶.
- Standard successive elimination of the unknowns along the block diagonal leaves a *reduced normal matrix* of much smaller dimension but much denser
	- Bombrun et al. (2010) investigated the Cholesky factorization of the reduced normal matrix concluding that a direct solution of the reduced normal equations for a 5-yr (7300 spin periods) mission would require about 1021 flops (*m3*/6 operations for Cholesky decomposition of full *m*x*m* matrix)
	- the dimension of the upper triangular matrix would require $\sim 2M$ GigaBytes memory
- Direct approach practically unfeasible

Gaia sphere solution : numerical approach

- Gaia's pipeline (AGIS): rigorous solution via a block-iterative technique solving separately each block of unknowns and disregarding the cross-terms connectivity
	- Covariances of stellar parameters are estimated at the last iteration, neglecting statistical correlations introduced by the attitude and calibration models (Holl and Lindegren 2012)
- Alternative solution method (GSR) implemented by the Astrometric Verification Unit (AVU) (Vecchiato et al. 2018) makes use of the LSQR method
	- Iterative algorihm (Paige & Saunders 1982) similar to the method of conjugate gradients
	- works on the condition matrix *O* and efficiently treats its sparseness
	- It provides an estimation of the unknowns' standard deviations
	- The original LSQR code has been modified to estimate the covariances of any selected group of unknowns

• Given the data volume and computational complexity, HPC tecniques are being exploited to optimize the code (Cesare et al. 2022)

Structure of AGIS (normal) matrix

Search for Cosmological Signatures

- Proper motions of extragalactic objects such as Quasars(QSO) can reveal a variety of cosmological and observer-induced phenomena over a range of angular scales (Darling at al. 2019)
	- Secular aberration, secular extragalacitc parallax, Gravitational Waves, anysotropic expansion
- Vector Spherical Harmonic (VSH) Analysis is a powerful tool for their investigation
	- The proper motion vector field $\vec{\mu}$ of QSOs can be decomposed into a set of orthogonal basis functions on the sphere (VSH) as

$$
\vec{\mu} = \sum_{l,m} (t_{l,m} \boldsymbol{T}_{l,m} + s_{l,m} \boldsymbol{S}_{l,m})
$$

where T_{lm} and S_{lm} are respecitvely the toroidal and spheroidal base functions of degree *l* and order *m*

• The residual proper motion field, defined on the sphere surface, orthogonally to the radial direction, is $V(\alpha, \delta)$. Such field can be expanded in a unique linear combination of VSH functions as

$$
\mathbf{V}(\alpha,\delta) = \sum_{l=1}^{\infty} \sum_{m=-l}^{l} (t_{lm} \mathbf{T}_{lm} + s_{lm} \mathbf{S}_{lm})
$$

where practically the expansion is truncated to a certain degree *l.*

Search for Cosmological Signatures

Some Numerical Aspects

- The coefficients *tlm* and *slm* are estimated in a least-squares adjustment, where the degree *l* is reflecting the angular resolution of the field systematics that are probed $(\theta \sim \pi/l)$
- Given *N* sources (~ 1.6M QSOs found in Gaia DR3) and a truncation to degree *L,* the condition equation system has dimensions $2N \times 2L(L + 2)$
	- the data storage of the full design matrix could be a problem, so it is convenient to build up the normal matrix on the fly; for a large dataset, *(N>> l* 2), this step is the most demanding in terms of computing time.
- Signals due to residual rotation and acceleration of the reference frame materialized by QSOs are fully contained in the first degree harmonics
- Stochastic gravitational waves can also mimick a proper motion field whose sky average $\langle \mu^2 \rangle$ can be directly related to the energy density of the cosmological GW background and is mostly contained in the degree 2 of VSH expansion (Gwinn 1997)
	- The amplitude of such signatures is expected to be ≤ 1 micro-arcsecond \Rightarrow difficult for Gaia, certainly within reach of the next-generation astrometric missions

Dipole pattern of QSOs proper motion induced by Galactic aberration (~5 micro-arcseconds)