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Why HPC in radio astronomy
Current and upcoming radio-interferometers are expected to 
produce volumes of data of increasing size that need to be 
processed to generate the corresponding sky brightness 
distributions through imaging. 

This represents an outstanding computational challenge, 
especially when large fields of view and/or high-resolution 
observations are processed.

Imaging represents one of the most computational demanding 
steps of the processing pipeline, both in terms of memory request 
and in terms of computing time.

For example, this 83,900x83,500 pixels image can take ~250,000 core-hours! Sweijen et al. (2022)



Radio astronomy imaging
In radio astronomy, imaging is the process through which the brightness distribution I(l,m) is determined by 
the complex visibility V(u,v,w) observed by a radio telescope.



Radio astronomy imaging
In radio astronomy, imaging is the process through which the brightness distribution I(l,m) is determined by 
the complex visibility V(u,v,w) observed by a radio telescope.

Visibility points are displaced into a regular mesh (so-called 
gridding).

The SKA will produce hundreds of billions of visibility points!

N ∝ 0.5×Nb(Nb − 1)× τtime × τfreq



Radio astronomy imaging
In radio astronomy, imaging is the process through which the brightness distribution I(l,m) is determined by 
the complex visibility V(u,v,w) observed by a radio telescope.

There is a Fourier transform relationship between the observed visibilities V(u,v,w)  and the brightness 
distribution I(l,m):

After gridding and Fourier transform, we get a so-called dirty image, which is the starting point to produce a 
final, scientific radio image.

This procedure, known as inversion, is particularly time consuming, reaching several tens of hours for large 
images and/or datasets.



Radio astronomy imaging

After gridding and Fourier transform, we get a so-called dirty image, which is the starting point to produce a 
final, scientific radio image.

This procedure, known as inversion, is particularly time consuming, reaching several tens of hours for large 
images and/or datasets.

Corda et al. (2022)



Where are we now?
The state-of-the-art for radio astronomy imaging is WSClean* (Offringa+ 2014; 2017), a C++ software which 
implements the w-stacking algorithm for imaging exploiting multi-threading, multi-processing, and CUDA (but 
only for gridding and single-GPU).

ü Most used tools for current radio interferometers (such as LOFAR or MeerKAT), great behaviour in several 
scientific cases (e.g., multiple scales of emission, faceting, etc.).

v Its parallel and GPU enabling is trivial and not yet fully “digested” by the users.

*https://wsclean.readthedocs.io/en/latest/



What is RICK?
RICK (Radio Imaging Code Kernels) is a code that addresses the w-stacking 
algorithm (Offringa+14) for imaging, combining parallel and accelerated 
solutions.

• C, C++, CUDA, HIP

• MPI & OpenMP for CPU parallelization

• The code is now capable of running full on multiple GPUs, using CUDA, 
HIP or OpenMP for offloading

• An optimized version of the reduce has been developed on both CPU 
(combining MPI+OpenMP) and GPU (using NCCL or RCCL, for Nvidia and 
AMD respectively); the FFT is done through the cuFFTMp library for Nvidia

• Publicly released*; a paper has been submitted to Astronomy and 
Computing (waiting for peer review)

De Rubeis et al. (2024)
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*https://github.com/ICSC-Spoke3/RICK



Why do we need multiple GPUs?

Modern and future radio telescopes will produce a huge amount of data, that hardly fit the memory of a 
single GPU (not even a single node)



Why do we need multiple GPUs?

Modern and future radio telescopes will produce a huge amount of data, that hardly fit the memory of a 
single GPU (not even a single node)

The answer is then to distribute the problem among multiple GPUs and multiple nodes

Easy to say, more difficult to do…



Nvidia Collective Communication Library (NCCL)
NCCL is a library of multi-GPU collective communication used to support the Reduce operation.

• Provides fast collectives over multiple GPU both within and across nodes. 

• Supports a variety of interconnect technologies (e.g. NVLink, PCIe).

• NCCL closely follows the popular collectives API defined by MPI, so can be very “natural” to use.



Nvidia Collective Communication Library (NCCL)
NCCL implements the Reduce operation as an intra-node ring, and an inter-node ring, when GPUs assigned 
to the main tasks communicate with RDMA with GPUs in different nodes without passing through the CPUs.



Nvidia Collective Communication Library (NCCL)
NCCL implements the Reduce operation as an intra-node ring, and an inter-node ring, when GPUs assigned 
to the main tasks communicate with RDMA with GPUs in different nodes without passing through the CPUs.

The requirement of a dedicated stream for the Reduce comes from the presence 
of asynchronous memory copies that collided with the ones within a previous 
function call



cuFFTMp
Fast Fourier Transform is a critical operation in radio astronomy, because it determines the relationship 
between the “observed” and the “desired” data (the final image).

For the FFT step, RICK implements the cuFFTMp library, that allows to distribute the FFT problem using 
NVSHMEM

NVSHMEM uses asynchronous, GPU-initiated data transfers,

eliminating synchronization overheads between the CPU and

the GPU 



cuFFTMp
Data are distributed among multiple GPUs and inverse-transformed.

However, now we have data already on the GPU!

Starting data distributed among N 
MPI tasks on the CPU

Data copied among N GPUs Z2Z 2D FFT transformed data Data re-distributed in the natural 
order on GPUs

Data copied back to CPU
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cuFFTMp
v We may need to do this FFT process even 100-1000s times, and at each time we need to create and 

destroy the descriptor, which is the data structure used by the library for the FFT.

ü This was critical for the performance, but we overcame this problem using CUDA kernels to write the to-
be-transformed data each loop, and then putting them directly inside the descriptor.

v The joint usage of NCCL and NVSHMEM, which can bring to severe errors during the FFT.

ü  There is the possibility to switch off NCCL support for NVSHMEM at runtime by setting 
NVSHMEM_DISABLE_NCCL=1.



Was it worth it?
We tested our code on Leonardo (CINECA) using Nvidia HPC-SDK 24.3, using real LOFAR-VLBI data, that is 
the closest facility to SKA in terms of size of end-products.

Comparing the code with GPUs, with respect to the one on CPUs:

• for a small test (~4 GB), we got a speed-up up to a factor ~ x27 for both Reduce and FFT

• for a big test (~530 GB), we got a speed-up up to a factor ~ x175 for the Reduce and ~ x32 for the FFT

WSClean RICK



Was it worth it?
On the other side, RICK is now limited by the communication costs, with the reduce operation that 
becomes the true bottleneck of the code.

This means that it is important to choose the right 
number of computational resources based on the 
problem size.

Increasing power does not necessarily return an 
increasing performance!

De Rubeis et al. (2024)



Conclusions

• Radio astronomy is facing a huge computational challenge with current and upcoming interferometers, that 
will require the exploitation of HPC techniques.

• With RICK we aim at porting the most computationally expensive steps of radio imaging on multiple GPUs: 
it is now capable of fully running on Nvidia GPUs thanks to the NCCL Reduce and the cuFFTMp.

• We described the new updates on an upcoming paper (submitted in August).

• Next step: introduce RICK into WSClean workflow, to produce scientifically valid images.


