

BENCHMARKING HPC PERFORMANCE FOR STATE-OF-THE-ART AI WORKLOADS

Gianluca Mittone, Iacopo Colonnelli, Robert Birke, Marco Aldinucci - PhD candidate - University of Turin, Computer Science Department, Italy

Pisa, Italy - September 18, 2024

EuroHPC

Joint Undertaking

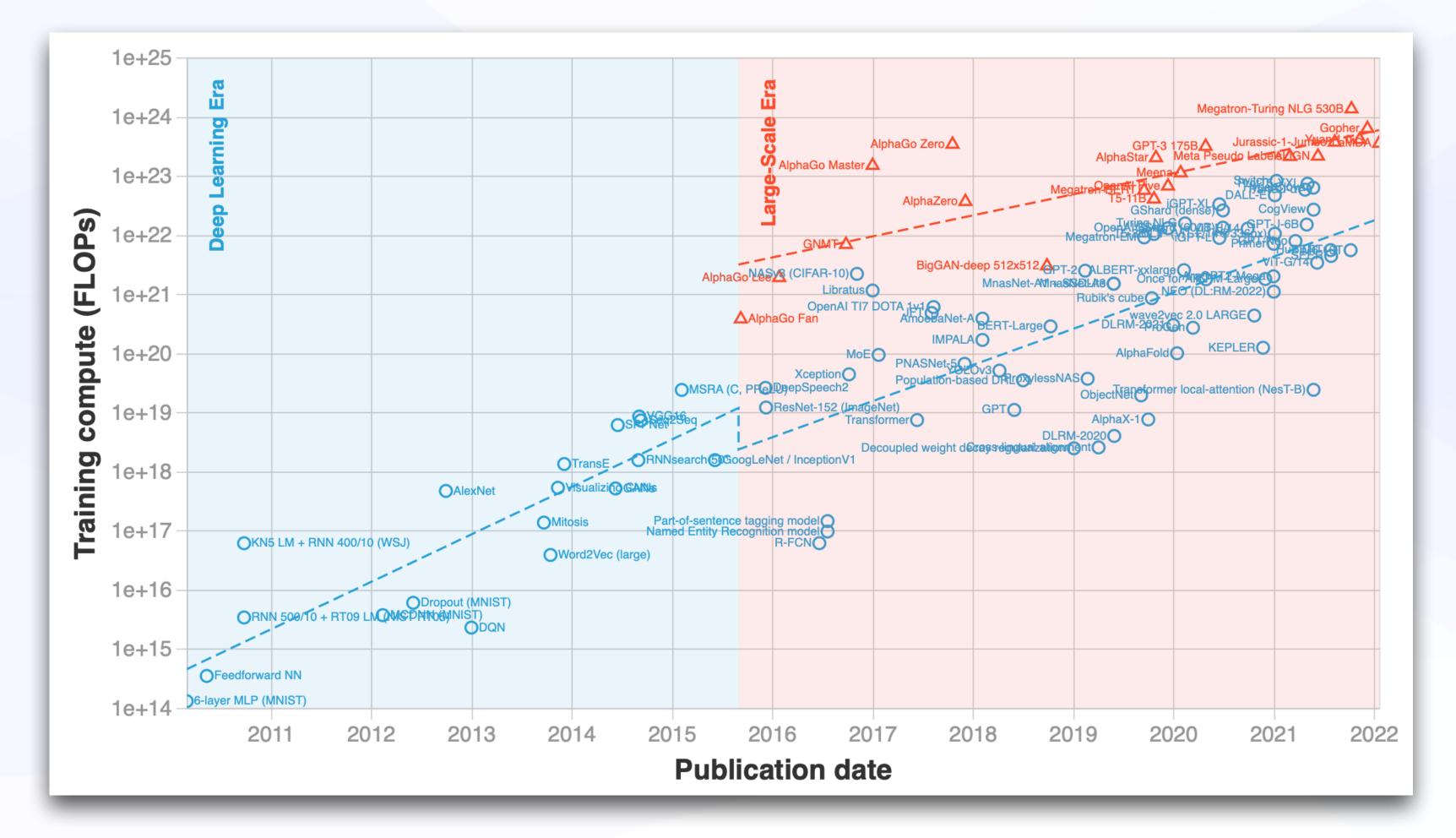
1

O THE DIGITAL DIVIDE

PUBLIC COMPUTE SCENARIO LLMS AS AN HPC BENCHMARK FIRST EXPERIMENTAL RESULTS CONCLUSIONS

Benchmarking HPC performance for state-of-the-art AI workloads

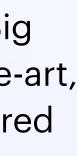
MODELS ARE GETTING LARGER...



The compelling growth in resource requirements of current ML models is reaching never-seen peaks, with a few Big Tech companies leading the state-of-the-art, with academia being increasingly impaired in competing due to a lack of resources

In 2012, **AlexNet** significantly impacted the ML community with its astonishing image recognition performance, obtained with 62M parameters trained on two GPUs. Ten years later, GPT-3 accounts for 175B parameters trained on 1024 GPUs

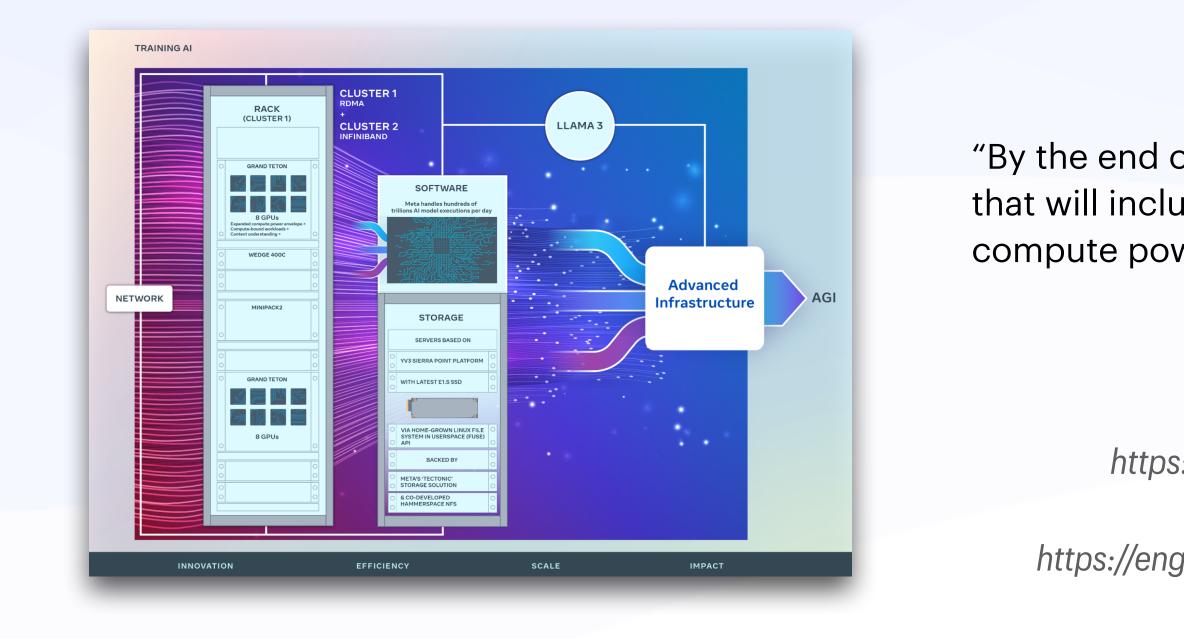
Sevilla, J., Heim, L., Ho, A., Besiroglu, T., Hobbhahn, M., & Villalobos, P. (2022, July). Compute trends across three eras of machine learning. In 2022 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.



... AND SO ARE DATACENTERS

"AI chips are often sold at high prices. Chip company Nvidia CEO Jensen Huang told CNBC earlier in March that the latest "Blackwell" B2OO artificial intelligence chip will be priced between \$30,000 and \$40,000. [...]

The report said the new project would be designed to work with chips from different suppliers."



Technology | Data Privacy

Microsoft, OpenAI plan \$100 billion datacenter project, media report says

By Reuters

March 29, 2024 10:14 PM GMT+1 · Updated 6 months ago

"By the end of 2024, we're aiming to continue to grow our infrastructure build-out that will include 350,000 NVIDIA H100 GPUs as part of a portfolio that will feature compute power equivalent to nearly 600,000 H100s."

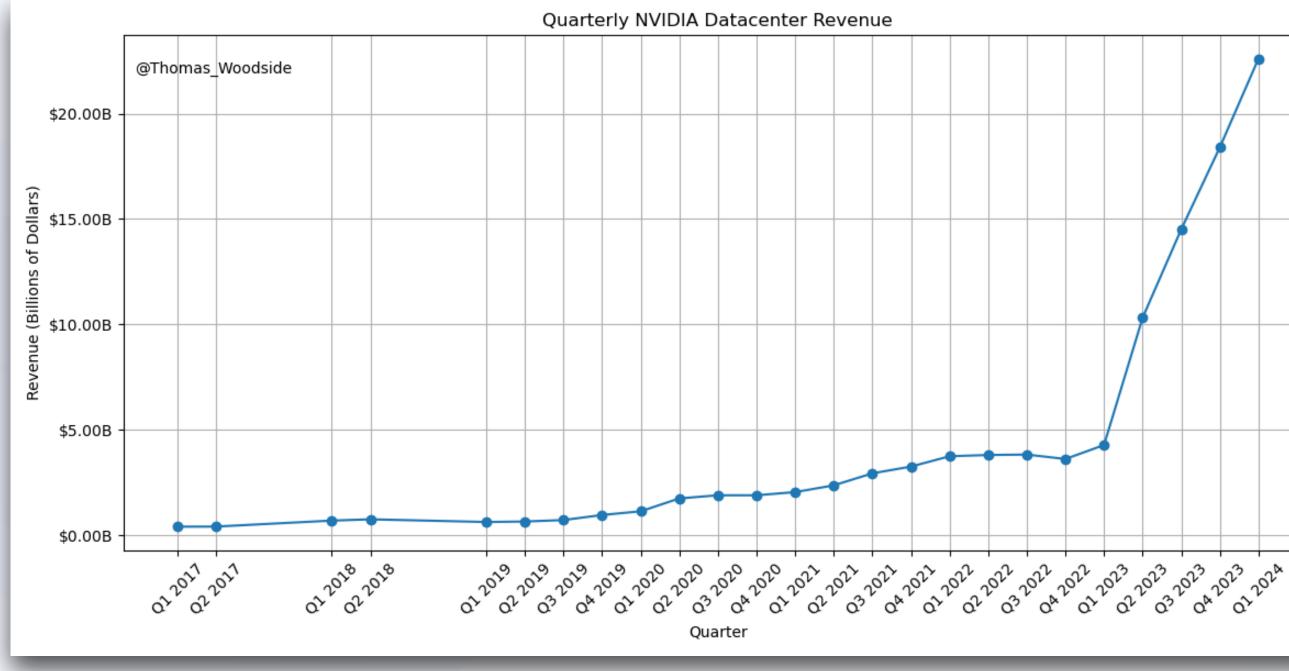
> https://www.reuters.com/technology/microsoft-openai-planning-100-billion-data-center-projectinformation-reports-2024-03-29/

https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/

Mittone G. - ITADATA2024 - September 18, 2024 - Pisa, Italy 4

Meta

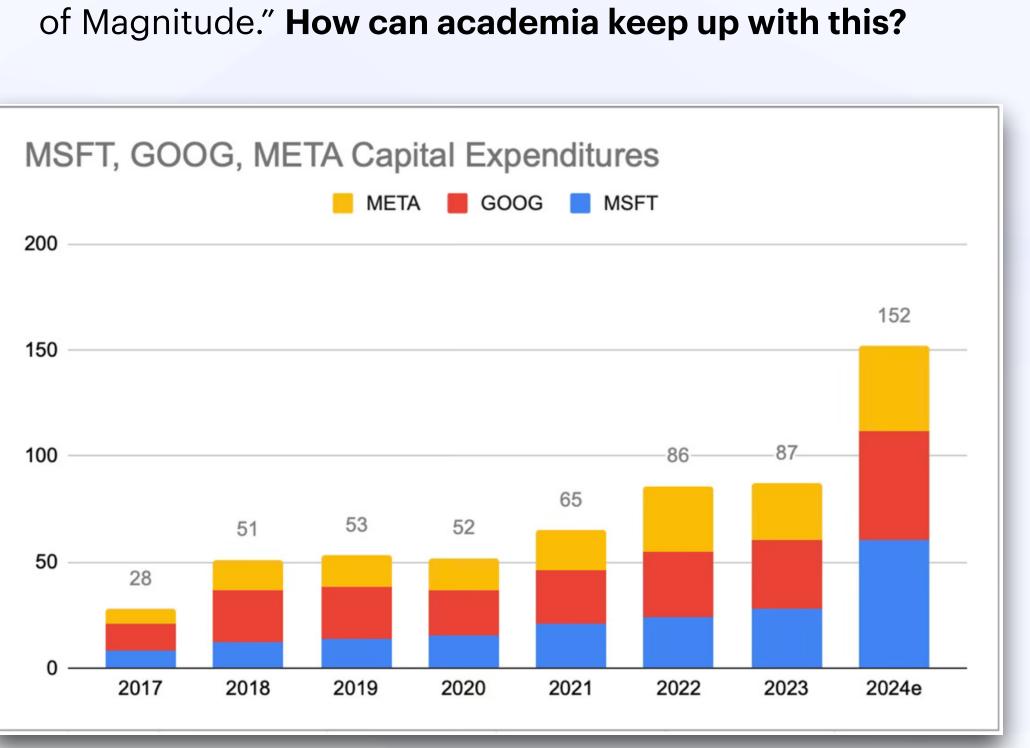
BIGTECHISLEADINGTHEGAME



Year	Annual in- vestment	AI accelerator shipments (in H100s-equivalent)	Power as % of US electricity produc- tion	Chips as leading-e wafer pro
2024	~\$150B	~5-10M	1-2%	5-10%
~2026	~\$500B	~10s of millions	5%	~25%
~2028	~\$2T	~100M	20%	~100%
~2030	~\$8T	~100s of millions	100%	4x curren

s % of current -edge TSMC roduction

LLMs are driving this unprecedented growth in "Orders"



Aschenbrenner, L. (2024, June) Situational Awareness: The Decade Ahead. https://situational-awareness.ai/

Mittone G. - ITADATA2024 - September 18, 2024 - Pisa, Italy 5

ent capacity

THE DIGITAL DIVIDE

PUBLIC COMPUTE SCENARIO

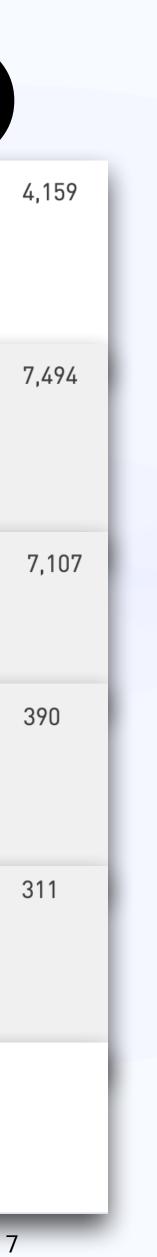
LLMS AS AN HPC BENCHMARK FIRST EXPERIMENTAL RESULTS CONCLUSIONS

Benchmarking HPC performance for state-of-the-art AI workloads

THE EUROPEAN HPC JOINT UNDERTAKING (EUROHPC JU)

SYSTEM*	SITE (COUNTRY)	ARCHITECTURE	PARTITION	TOTAL RESOURCES**	FIXED ALLOCATION	8	MareNostrum 5 ACC - BullSequana XH3000, Xeon Platinum 8460Y+ 32C 2.3GHz, NVIDIA H100 64GB, Infiniband NDR, EVIDEN EuroHPC/BSC	663,040	175.30	249.44	4,
MARENÖSTRUM	BSC (ES)	Atos BullSequana XH3000	MN5 ACC	129 377	32 000	7	Spain Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100	1,824,768	241.20	306.31	7,
	CINECA (IT)	Atos BullSequana XH2000	Leonardo Booster	545 865	50 000		Infiniband, EVIDEN EuroHPC/CINECA Italy				
LUMI	CSC (FI)	HPE Cray EX	LUMI-G	351 455	35 000	5	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,752,704	379.70	531.51	7,
	LuxProvide (LU)	Atos BullSequana XH2000	MeluXina GPU	25 000	25 000	89	MeluXina - Accelerator Module - BullSequana XH2000, AMD EPYC 7452 32C 2.35GHz, NVIDIA A100 40GB, Mellanox HDR InfiniBand/ParTec ParaStation ClusterSuite, EVIDEN LuxProvide	99,200	10.52	15.29	39
KARØ L1NA	IT4I VSB-TUO (CZ)	HPE Apollo 2000 Gen10 Plus and HPE Apollo 6500	Karolina GPU	7 500	7 500	135	Luxembourd Karolina, GPU partition - Apollo 6500, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Infiniband HDR200, HPE IT4Innovations National Supercomputing Center, VSB-Technical	71,424	6.75	9.08	31
VEGA	IZUM Maribor (SI)	Atos BullSequana XH2000	Vega GPU	7 100	7 100	226	University of Ostrava Czechia VEGA HPC CPU - BullSequana XH2000, AMD EPYC 7H12 64C 2.6GHz, Mellanox InfiniBand HDR100, EVIDEN	122,880	3.82	5.37	
https://eurohpo intensive-applie		eu/eurohpc-ju-	-access-call-a	i-and-data-		D OO List.	IZUM Slovenia PRACE Mittone G ITADATA202	4 - Septembe	er 18, 2024 - P	isa, Italy	7

The List.



THE TRILLION PARAMETER CONSORTIUM

"[...] given the scale of the effort to prepare datasets for training and the scale of cycles that need to be allocated to build and train a model, it became clear that while the community could develop a number of smaller models independently, and compete for cycles, a broader "Al for **Science**" community must work together if we are to create models that are at the scale of the largest private models."

https://tpc.dev/

The founding partners of TPC are from the following organizations (listed in organizational alphabetical order):

Agency for Science, Technology and Research (A*STAR)	LAION	Sandia National Laborato
Amazon Web Services, Inc (AWS)	Lawrence Berkeley National Laboratory	Seoul National University
Amazon web Services, nie (Aws)		SLAC National Accelerate
AI Singapore	Lawrence Livermore National Laboratory	Laboratory
Allen Institute For AI		Sony Research
	Leibniz Supercomputing Centre	
AMD		Stanford University
	Los Alamos National Laboratory	
Argonne National Laboratory		STFC Rutherford Applete
	Max Planck Computing & Data	Laboratory, UKRI
Australian National University	Facility (MPCDF)	
		Stonybrook University
Barcelona Supercomputing Center	Microsoft	
		SURF
Brookhaven National Laboratory	National Center for	
	Supercomputing Applications	Texas Advanced Computi
CalTech		
	National Energy Technology	Thomas Jefferson Nation
CEA	Laboratory	Accelerator Facility

AN AI-ORIENTED BENCHMARK: MLPERF

Benchmark	Performance metrics	Application domain	Data vol- ume	Comments
HPL, HPL-AI	Flops, Flops/Watt	Random dense system of lin- ear equations	Variable	Used in Top500 and Green500 to rank supercomputers the performance for machine size. HPL measures perfo AI measures performance in mixed precision
HPCAI500	Valid Flops, Valid Flops/Watt	Image classification, Weather analytics	150 GB & 1.65 TB	Convolution and GEMM layers measure the performat penalty based on failure to meet target accuracy. Lime Detection and Image Classification tasks with mich learning models (Faster-RCNN, ResNet)
Deep500	Throughput, Time to solution	any machine learning application	150 GB	Provides infrastructure to help evaluate different fram tiple levels of operators. Challenging to integrate into with ImageNet dataset.
MLPerf HPC	Time to train	Cosmology and weather analytics	5.1 TB & 8.8 TB	Targets representative scientific machine learning app Provision of two types submissions, closed and open to solution metric and focused timing captures holistic

"The **strong scaling** metric measures the wall clock time required to train a model on the specified dataset to achieve the specified quality target [...] The **weak scaling** metric benchmark measures the throughput for a supercomputing system training multiple models concurrently on the specified dataset to achieve the specified quality target."

Organization	System Name	Host Processor Model Name	Host Processors	Accelerator Model Name	Accelerators Per Node	Software
ANL	theta_gpu_n128_pt1.7.1	AMD EPYC 7742 64-Core Pr	32	NVIDIA A100-SXM4-40GB	128	PyTorch 1.7.1
ANL	theta_gpu_n128_pt1.9.0	AMD EPYC 7742 64-Core Pr	32	NVIDIA A100-SXM4-40GB	128	PyTorch 1.9.0
CSCS	piz_daint_gpu_n1024_pt1.9.0	Intel(R) Xeon(R) E5-2690 v3	1024	NVIDIA P100-PCIE-16GB	1024	PyTorch 1.9.0
CSCS	piz_daint_gpu_n128_pt1.9.0	Intel(R) Xeon(R) E5-2690 v3	128	NVIDIA P100-PCIE-16GB	128	PyTorch 1.9.0
CSCS	piz_daint_gpu_n256_pt1.8.0	Intel(R) Xeon(R) E5-2690 v3	256	NVIDIA P100-PCIE-16GB	256	PyTorch 1.8.0
Fujitsu/RIKEN	fugaku_A64FX_tensorflow	FUJITSU Processor A64FX	512	NULL	0	TensorFlow 2.2.0 + Mesh TensorFlow
HelmholtzAl	horeka_gpu_n512_pytorch1.10	Intel Xeon Platinum 8368	256	NVIDIA A100-PCIE-40GB	512	PyTorch 1.10
HelmholtzAl	juwelsbooster_gpu_n1024_mxnet	AMD EPYC 7402	512	NVIDIA A100-SXM4-40GB	1024	MXNet 1.9
HelmholtzAl	juwelsbooster_gpu_n1024_pytorc	AMD EPYC 7402	512	NVIDIA A100-SXM4-40GB	1024	PyTorch 1.10
HelmholtzAl	juwelsbooster_gpu_n2048_pytorc	AMD EPYC 7402	1024	NVIDIA A100-SXM4-40GB	2048	PyTorch 1.10
HelmholtzAl	juwelsbooster_gpu_n512_mxnet1.9	AMD EPYC 7402	256	NVIDIA A100-SXM4-40GB	512	MXNet 1.9
LBNL	perlmutter_128x4_ngc21.08_pytor	AMD EPYC 7763	128	NVIDIA A100-SXM4-40GB	512	PyTorch NVIDIA Release 21.08
LBNL	perlmutter_256x4_ngc21.09_mxnet	AMD EPYC 7763	256	NVIDIA A100-SXM4-40GB	1024	MXNet NVIDIA Release 21.09
LBNL	perlmutter_512x4_ngc21.09_pytor	AMD EPYC 7763	512	NVIDIA A100-SXM4-40GB	2048	PyTorch NVIDIA Release 21.09

Farrell, S., Emani, M., Balma, J., Drescher, L., Drozd, A., Fink, A., ... & Yin, J. (2021, November). MLPerf™ HPC: A holistic benchmark suite for scientific machine learning on HPC systems. In 2021 IEEE/ACM Workshop on Machine Learning in High Performance Computing Environments (MLHPC) (pp. 33-45). IEEE.

rs. Problem size scaled to optimize formance at double precision, HPL-

nance in valid Flops which impose mited to Microbenchmarks, Object croscopic view of common deep

mework implementations and multo scientific applications. Evaluated

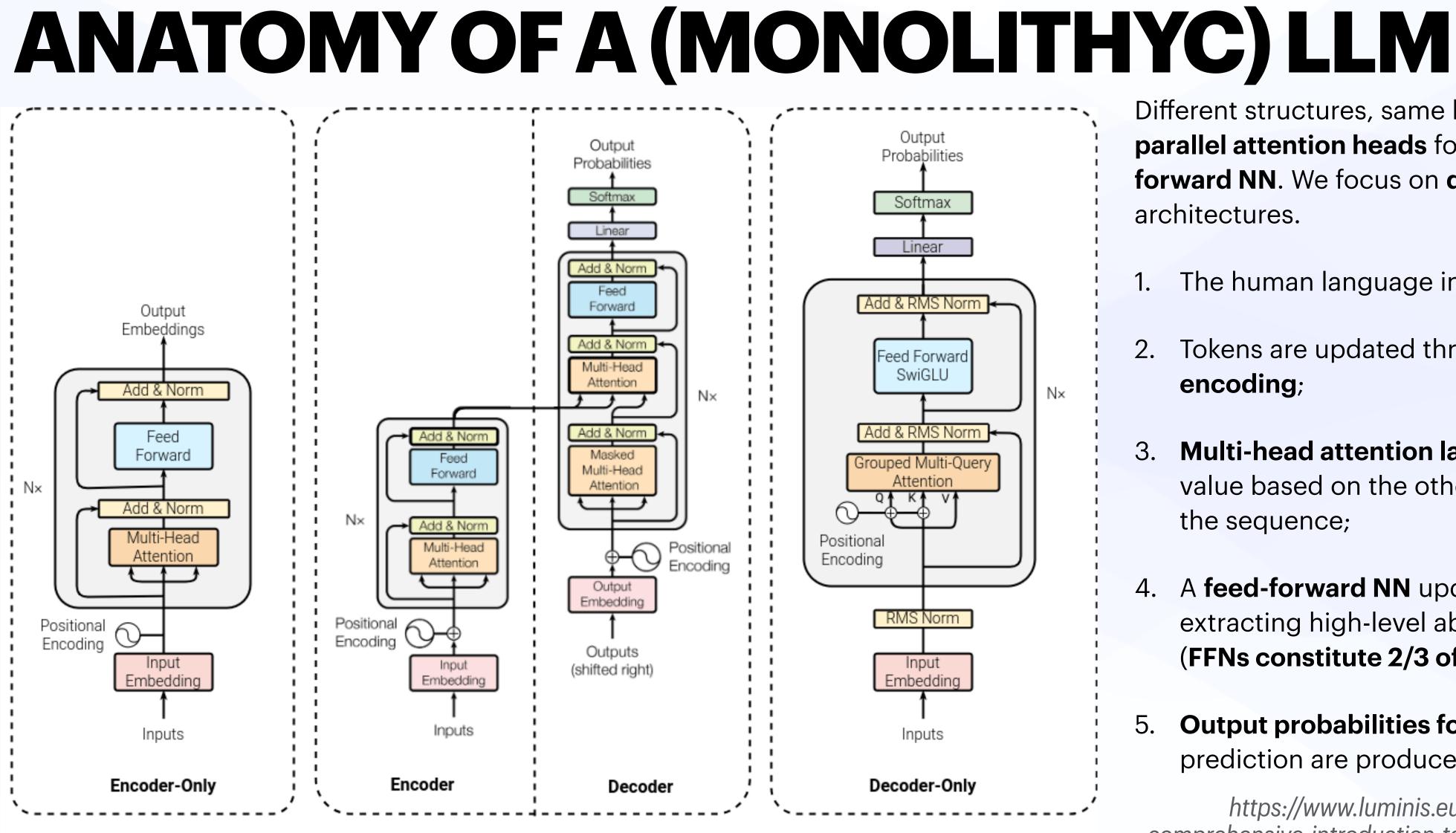
pplications with massive datasets. n enable novel optimizations. Time tic model performance "The MLPerf Training benchmark suite measures how fast systems can train models to a **target quality** metric. Current and previous results can be reviewed through the results dashboard below."

THE DIGITAL DIVIDE PUBLIC COMPUTE SCENARIO

• LLMSASAN HPC BENCHMARK

FIRST EXPERIMENTAL RESULTS CONCLUSIONS

Benchmarking HPC performance for state-of-the-art AI workloads



BERT (Devlin et al., 2018)

Original Transformer (Vaswani et al., 2017)

LLaMA (Touvron et al., 2023)

Different structures, same heart: **multiple** parallel attention heads followed by a feedforward NN. We focus on decoder-only architectures.

- The human language inputs are **tokenised**;
- Tokens are updated through **positional** encoding;
- Multi-head attention layers update tokens' 3. value based on the other tokens present in the sequence;
- 4. A feed-forward NN updates tokens' value, extracting high-level abstractions of them (FFNs constitute 2/3 of the parameters!);
- 5. Output probabilities for the next token prediction are produced.

https://www.luminis.eu/blog/llm-series-part-1-acomprehensive-introduction-to-large-language-models/

MIXTURE-OF-EXPERTLLMS

The experts are **not really "experts"**: the data distribution seen by them observed experimentally starts to be marginally significant in the vary last layers

In a **Mixture-of-Expert** (MoE) LLM, the FFN is

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bamford, C., ... & Sayed, W. E. (2024). Mixtral of experts. arXiv preprint arXiv:2401.04088.

PARALLEL AND DISTRIBUTED LLM TRAINING

LLMs' pre-training can be distributed and parallelised according to a wide variety of strategies, calibrating memory occupation, load balancing, and communication:

- - **Distributed Data Parallelism**: Data Parallel on multiple nodes (reduces memory occupation);
 - (reduces memory occupation even more but requires increased communications);
- model (optimises computation but requires careful tuning);
- **Sequence Parallelism**: mini-batches are subdivided, and tensor operations are run in parallel (increased communication);
- from the experts' layers, that are in common between all the instances (Model Parallel, balances load but requires more communications).

Zhao, Y., Gu, A., Varma, R., Luo, L., Huang, C. C., Xu, M., ... & Li, S. (2023). Pytorch fsdp: experiences on scaling fully sharded data parallel. arXiv preprint arXiv:2304.11277. Mittone G. - ITADATA2024 - September 18, 2024 - Pisa, Italy 13

Data Parallelism: multiple copies of the same model processing different data (impacts global batch size, requires synchronisations);

• Fully-Sharded Data Parallelism: a Distributed Data Parallel approach sharding model's parameters, gradients, and optimiser

Model Parallelism: the model is partitioned and distributed on multiple computing elements (distributes memory and computing);

Pipeline Parallelism: subdivides a mini-batch into micro-batches and interleaves their processing in a pipeline fashion through the

Tensor Parallelism: the model's tensors are subdivided, and operations on mini-batches are run in parallel (increased communication);

Expert Parallelism: a mix of data parallelism and model parallelism in which an MoE model is trained in a Data Parallel fashion apart

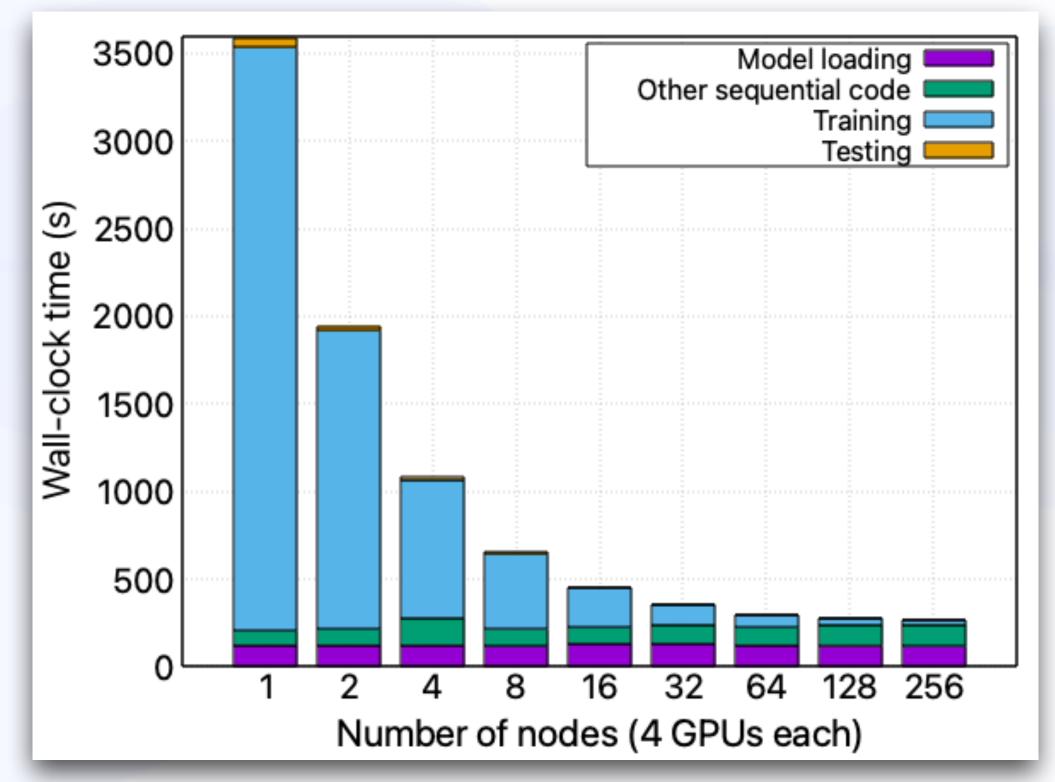
THE DIGITAL DIVIDE PUBLIC COMPUTE SCENARIO LLMS AS AN HPC BENCHMARK

• FIRST EXPERIMENTAL RESULTS

CONCLUSIONS

Benchmarking HPC performance for state-of-the-art AI workloads

TRAINING TIME ANALYSIS (FSDP)



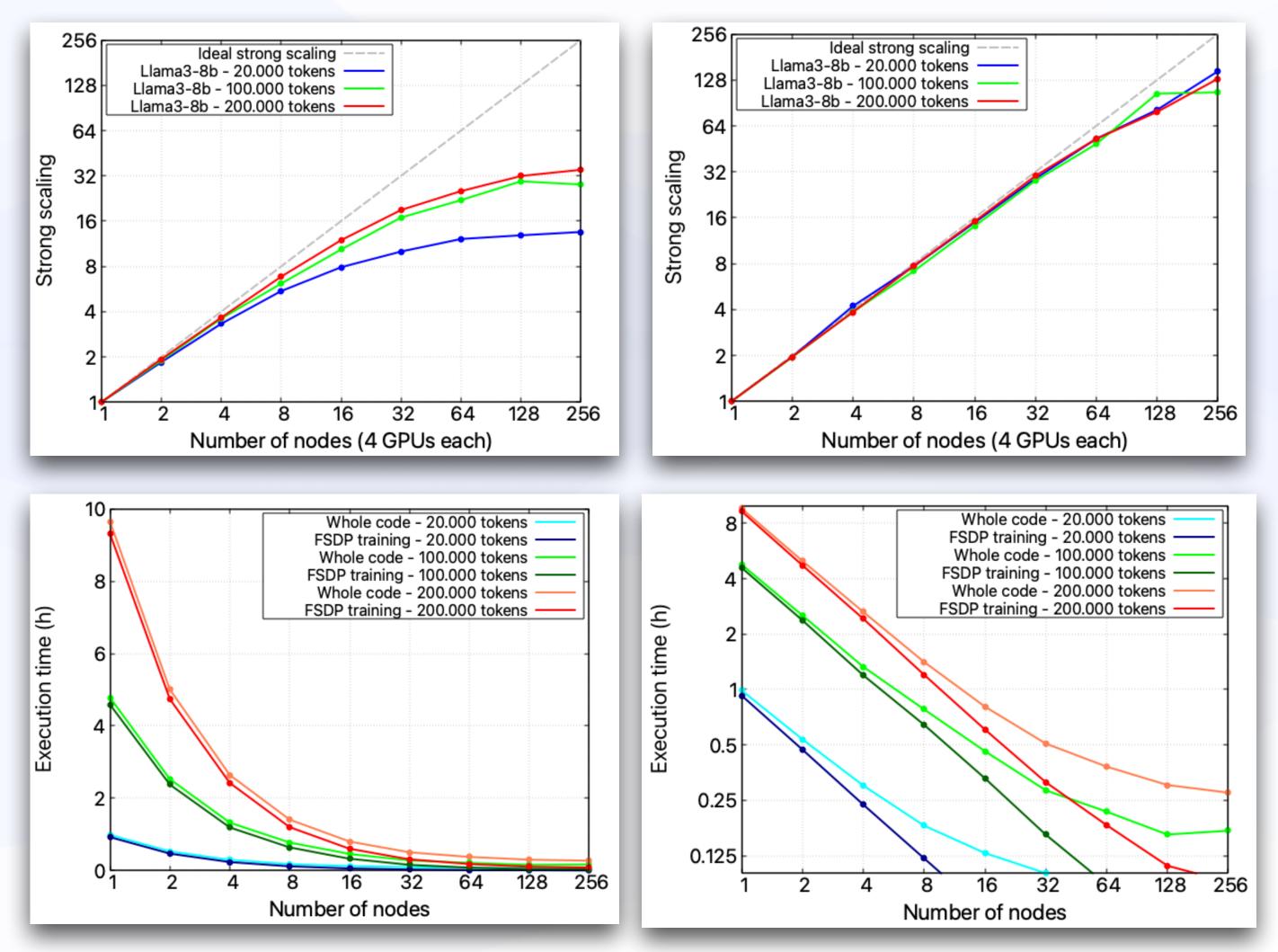
LLaMA-3 (8B version) execution time subdivided in its main components. The training is done on 20,000 training samples of 2,048 tokens each on the Leonardo HPC.

The first thing to be noticed is the code's relatively **poor scalability** performance: the **setup overhead** becomes predominant starting from 16 nodes (64 GPUs). The training itself, on the other hand, seems to scale reasonably well

# Nodes	Model loading (s)	Distributed setup (s)	d	Training (s		Testing (s)
1	120.6	87.788		3325.4		54.4
2	123.6	95.3375		1700		27
4	120.6	158.44		788.4		13
8	121.8	94.5164		432.6		6
16	131.8	95.7248		223.4		3
32	131.4	109.98325		115		1
64	122	109.5124		63.2		~0
128	118.6	119.1875		40.8		~0
256	117.2	124.8	7	22.8		~0

Colonnelli, I., Birke, R., Malenza, G., Mittone, G., Mulone, A., & Aldinucci, M. (2024). Cross-Facility Federated Learning - Part II. Presented at the ELISE Wrap-Up Conference & ELLIS Community Event.

TRAINING TIME ANALYSIS (FSDP)

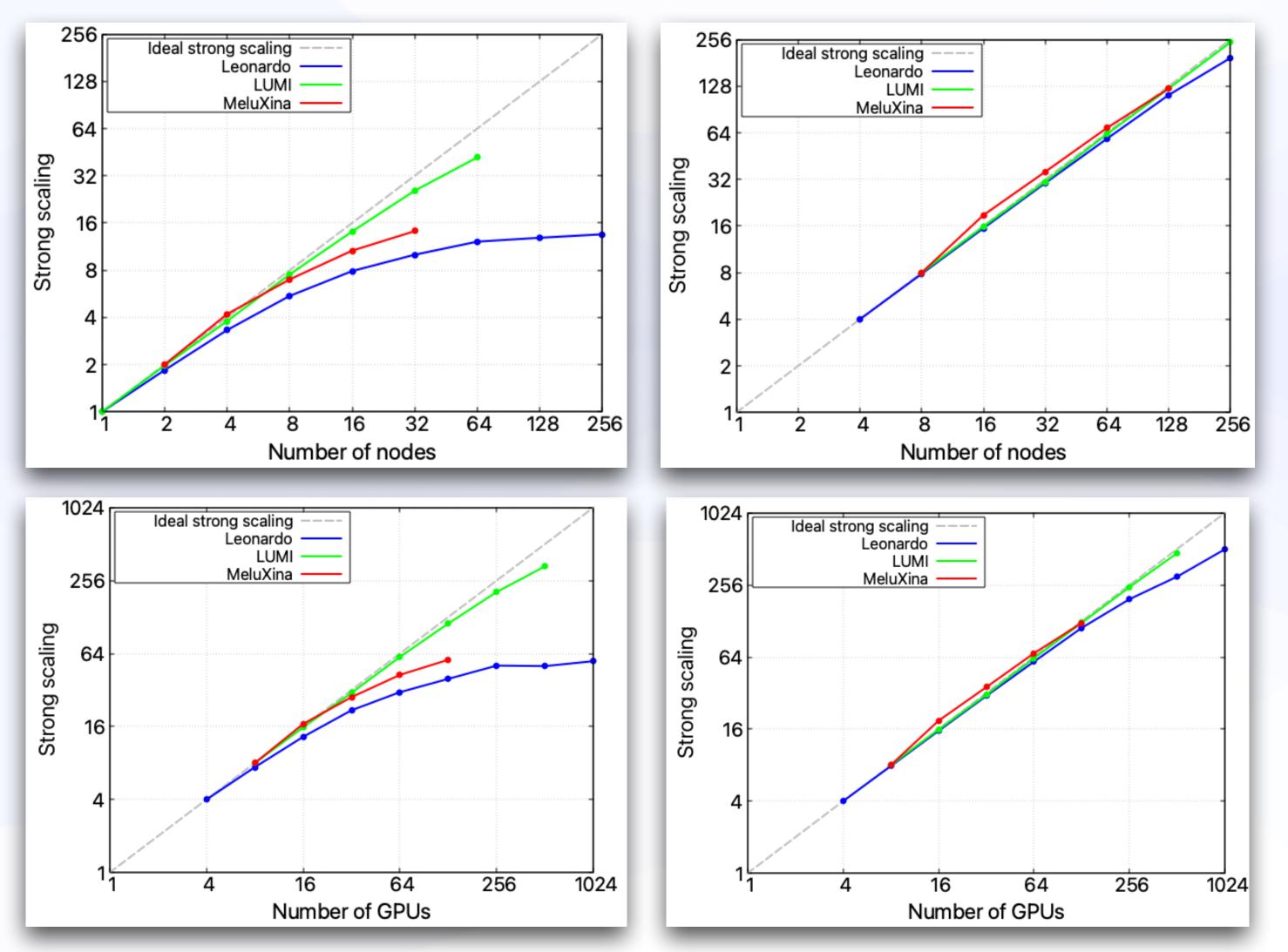


LLaMA-3 (8B version) scaling performance on Leonardo. Both the whole deployment code and the FSDP code are analysed. The training is done on 20,000 train- ing samples of 2,048 tokens each on the Leonardo HPC.

These performance issues do not seem to be correlated with the **problem's size** (i.e., the size of the training dataset) or related to the FSDP distributed training technique. These statements are confirmed by the fact that increasing the training dataset size does not change the code's scaling behaviour and that isolating the performance of the FSDP code section ensures its nice scalability performance up to 128 nodes.

Colonnelli, I., Birke, R., Malenza, G., Mittone, G., Mulone, A., & Aldinucci, M. (2024). Cross-Facility Federated Learning - Part II. Presented at the ELISE Wrap-Up Conference & ELLIS Community Event.

DIFFERENT HPCS, DIFFERENT SCALING



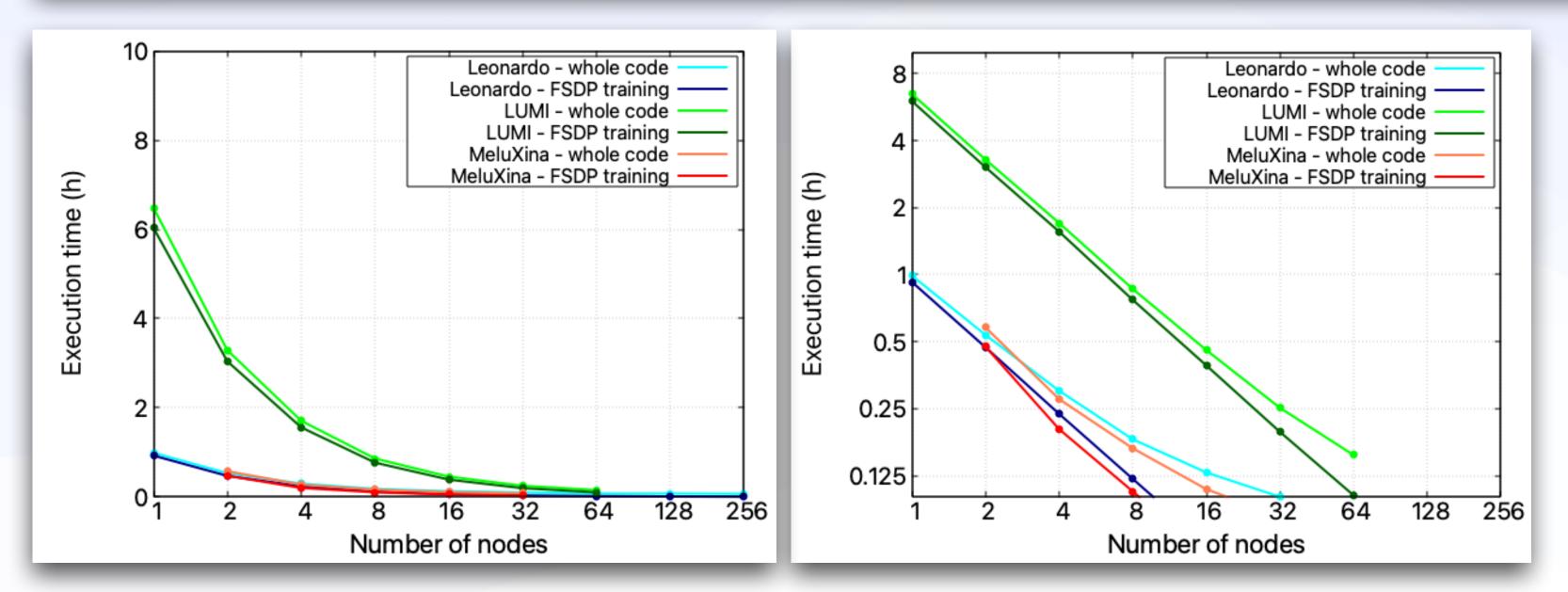
Comparison between LLaMA-3 (8B version) scaling performance on Leonardo, LUMI and MeluXina. Both the whole deployment code and the FSDP code are analysed. The training is done on a different number of tokens on each HPC infrastructure to accommodate the different computing power.

When investigating this performance issue and comparing all three available HPC infrastructures, it appears clear that **the** problem is unrelated to the hardware itself: also on LUMI and MeluXina the whole code's scalability performance starts to spoil after 16 nodes, while the FSDP component scales reasonably well on all infrastructures. A single instance of LLaMA-3 8 billion can fit into a single Leonardo or LUMI node but requires two nodes on MeluXina.

Colonnelli, I., Birke, R., Malenza, G., Mittone, G., Mulone, A., & Aldinucci, M. (2024). Cross-Facility Federated Learning - Part II. Presented at the ELISE Wrap-Up Conference & ELLIS Community Event.

DIFFERENT HPCS, DIFFERENT SCALING

	Leonar	do		LUMI		MeluXina			
# Nodes	Queue time (min:sec)	Execution time (min:sec)	# Nodes	Queue time (min:sec)	Execution time (min:sec)	# Nodes	Queue time (min:sec)	Execution time (min:sec)	
1	51:08	49:49	1	13:35	50:50	2	00:01	34:33	
2	03:03	27:05	2	05:05	26:36	4	11:28	16:46	
4	04:35	15:18	4	07:39	14:37	8	50:58	10:36	
8	04:29	09:37	8	09:28	08:27	16	41:38	07:26	
16	38:11	06:09	16	03:42	05:25	32	00:18	06:09	

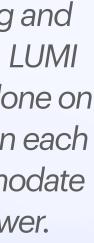


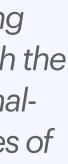
LLaMA-3 (8B version) queuing and execution times on Leonardo, LUMI and MeluXina. The training is done on a different number of tokens on each HPC infrastructure to accommodate the different computing power.

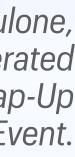
These numbers do not reflect the Top500 ranking!

Comparison between LLaMA-3 (8B version) scaling performance on Leonar- do, LUMI and MeluXina. Both the whole deployment code and the FSDP code are analysed. The training is done on 16,384 training samples of 2048 tokens each on each HPC infrastructure.

Colonnelli, I., Birke, R., Malenza, G., Mittone, G., Mulone, A., & Aldinucci, M. (2024). Cross-Facility Federated Learning - Part II. Presented at the ELISE Wrap-Up Conference & ELLIS Community Event.







THE DIGITAL DIVIDE PUBLIC COMPUTE SCENARIO LLMS AS AN HPC BENCHMARK FIRST EXPERIMENTAL RESULTS

OCONCLUSIONS

Benchmarking HPC performance for state-of-the-art AI workloads

BENCHMARKING HPC PERFORMANCE FOR STATE-OF-THE-ART AI WORKLOADS

are unreliable indicators of their performance on such types of workloads.

- LLM training workflows scale differently on different HPC facilities;
- This is mainly due to overhead handling (model loading, PyTorch distributed setup);
- FSDP-training scales well up to 128 nodes on all HPC facilities but with very different compute times;

Future works will investigate:

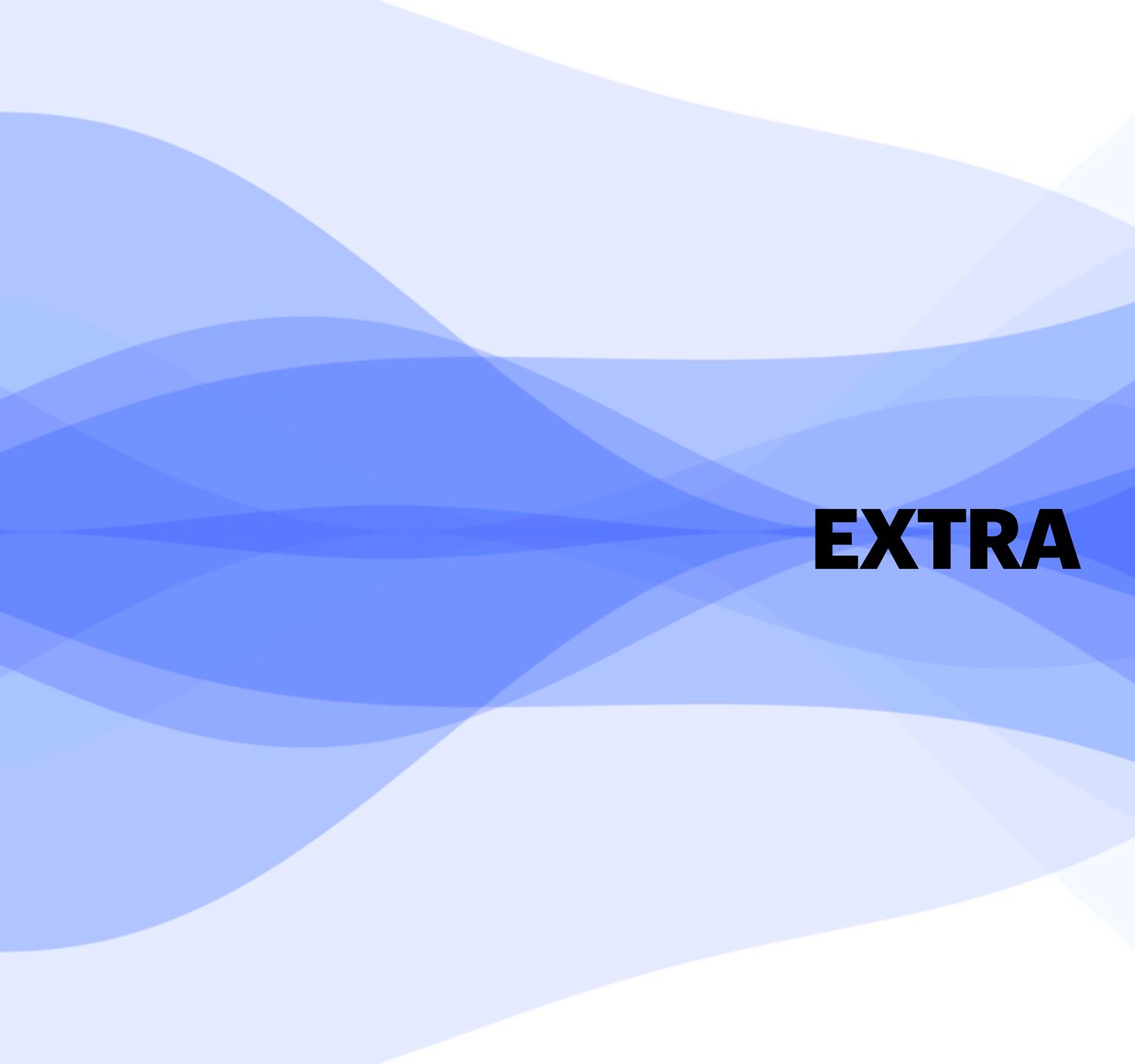
- Reduce model loading time by using high-end storage and I/O optimisation techniques (e.g., GPUDirect storage);
- Investigate computing and communication bottlenecks at large scales;
- Investigate strategies to avoid PyTorch cold restarts on all nodes (caching, faster setup algorithms);
- Sum up all these considerations into a single number!

We have tested a state-of-the-art AI workload on different HPCs and found that the current tools used to assess HPC computing power

BENCHMARKING HPC PERFORMANCE FOR STATE-OF-THE-ART AI WORKLOADS

Gianluca Mittone, Iacopo Colonnelli, Robert Birke, Marco Aldinucci - PhD candidate - University of Turin, Computer Science Department, Italy

Parallel Computing group [ALPHA]



EXPERIMENTAL SETUP

MODEL: ResNet-18

- Standard Convolutional Neural Network
- ~11 million trainable parameters

DATASET: MNIST

- Standard benchmarking dataset
- 60.000 train/10.000 test images
- 28x28 pixel

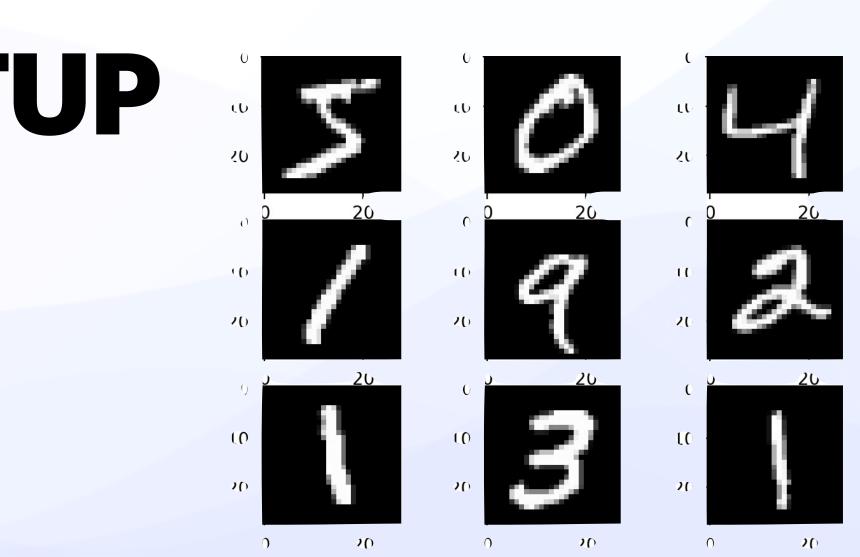
COMPUTING: C3S

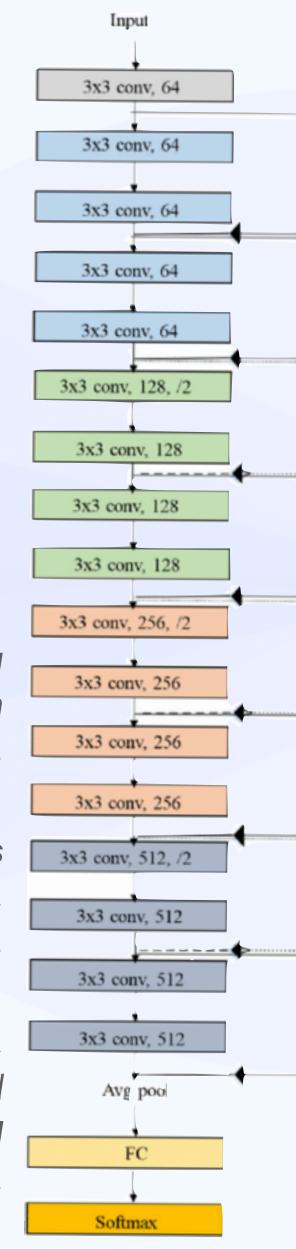
- OmniPath network
- ~2 x Intel Xeon CPU E5-2697 v4 per node

He, K., Zhang, X., Ren, S., & Sun, J. (2016). "Deep residual learning" for image recognition". In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

Deng, L. (2012). "The mnist database of handwritten digit images for machine learning research". IEEE Signal Processing Magazine, 29(6), 141–142.

Aldinucci, M., Rabellino, S., Pironti, M., Spiga, F., Viviani, P., Drocco, M., ... & Galeazzi, F. (2018, May). "HPC4AI: an ai-on-demand federated platform endeavour". In Proceedings of the 15th ACM International Conference on Computing Frontiers (pp. 279-286).





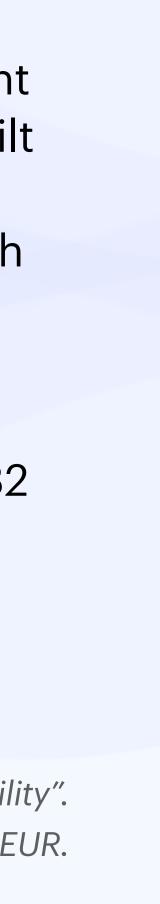
MEASURED WALL CLOCK TIME

1	2	4	8	16	32
14967	8433	5051	4104	4870	7517
14872	7672	4184	2435	1633	1415
10175	5414	2821	1656	1085	905
1	2	4	8	16	32
14967	15578	15853	16624	18216	_
14872	14636	14999	15046	15128	15385
10249	9951	10090	10340	10407	10607
	14872 10175 1 14967 14872	1496784331487276721017554141214967155781487214636	149678433505114872767241841017554142821124149671557815853148721463614999	14967843350514104148727672418424351017554142821165612481496715578158531662414872146361499915046	14967843350514104487014872767241842435163310175541428211656108512481614967155781585316624182161487214636149991504615128

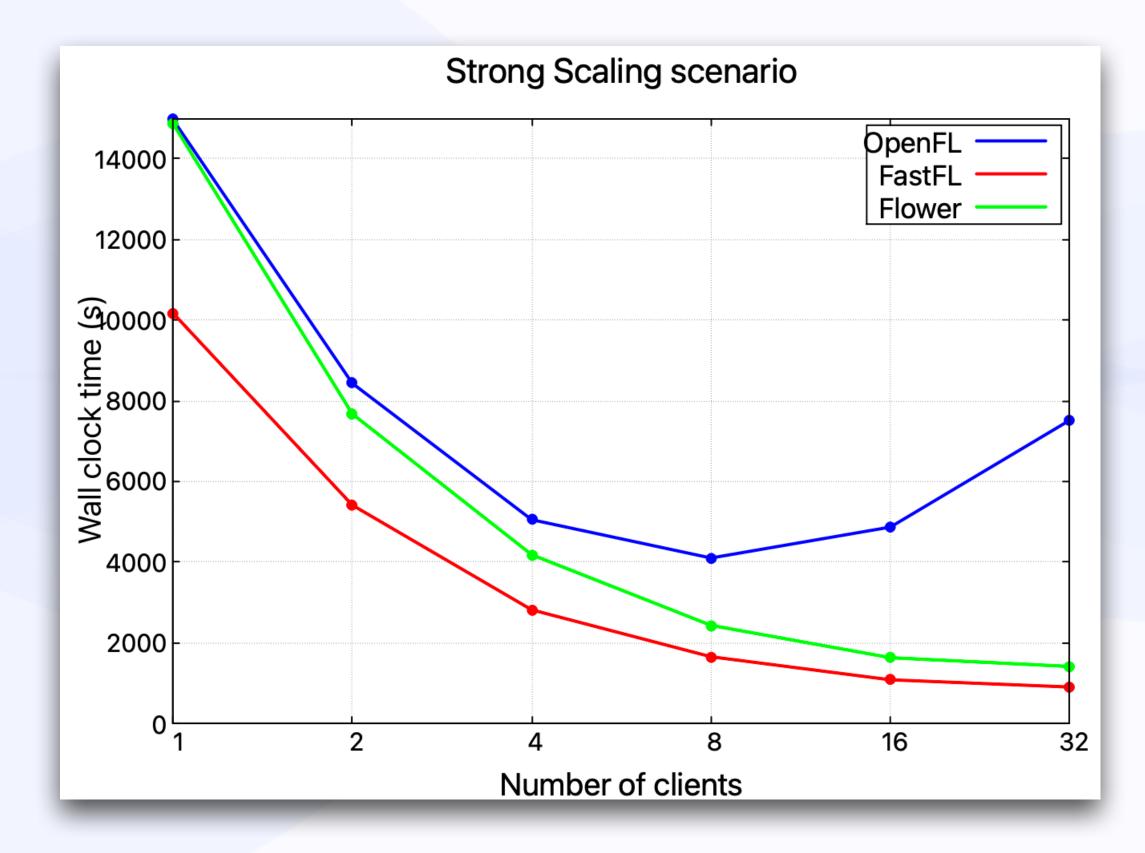
<u>Mittone, G.</u>, Fonio, S. (2023). "Benchmarking Federated Learning Scalability". In Proceedings of the 2nd Italian Conference on Big Data and Data Science (ITADATA 2023). CEUR.

MITTONE G. - ITADATA 23 - SEP 12, 23 - NAPLES, IT

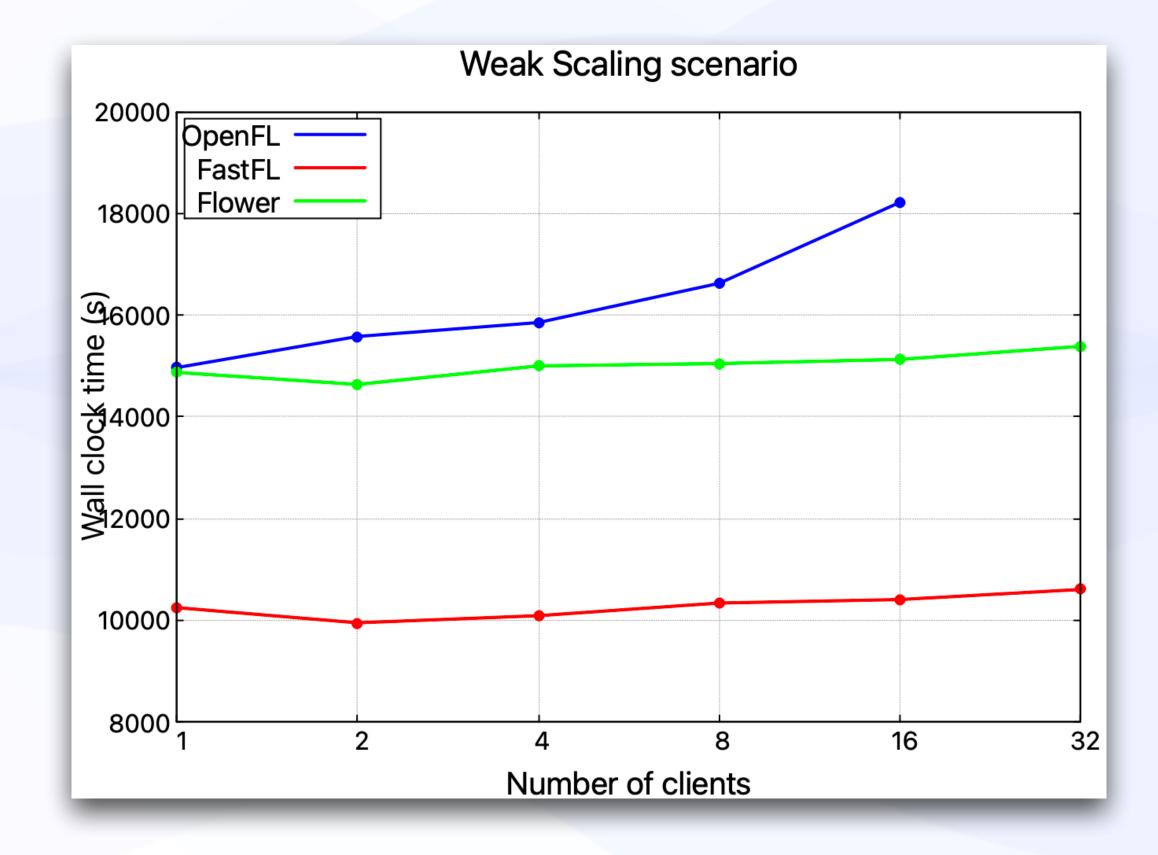
- **OpenFL** and **Flower** display different scaling behaviors despite being built with the same technologies
- Flower outperforms OpenFL in both scenarios.
- FastFL is comparable to Flower OpenFL exceeded the maximum
 - runtime for this benchmark in the 32 clients weak scaling scenarios (> 6 hours)



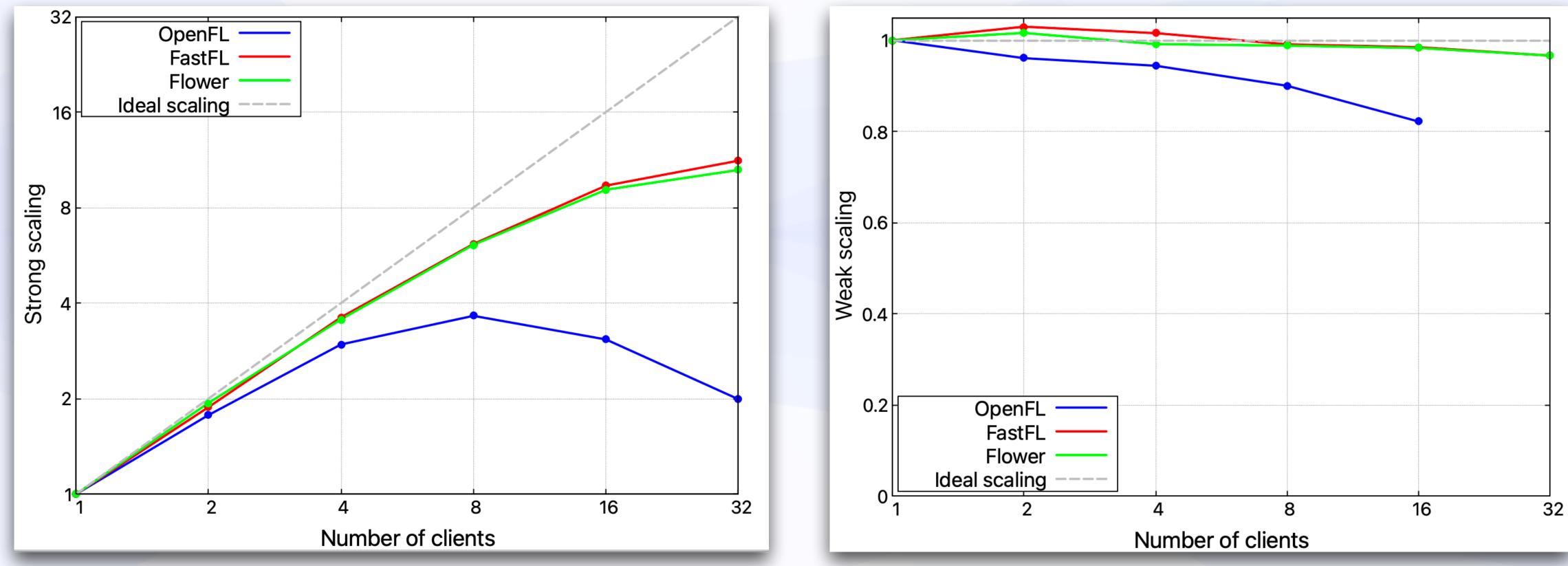
VISUALIZING WALL CLOCK TIME



Mittone, G., Fonio, S. (2023). "Benchmarking Federated Learning Scalability". In Proceedings of the 2nd Italian Conference on Big Data and Data Science (ITADATA 2023). CEUR.

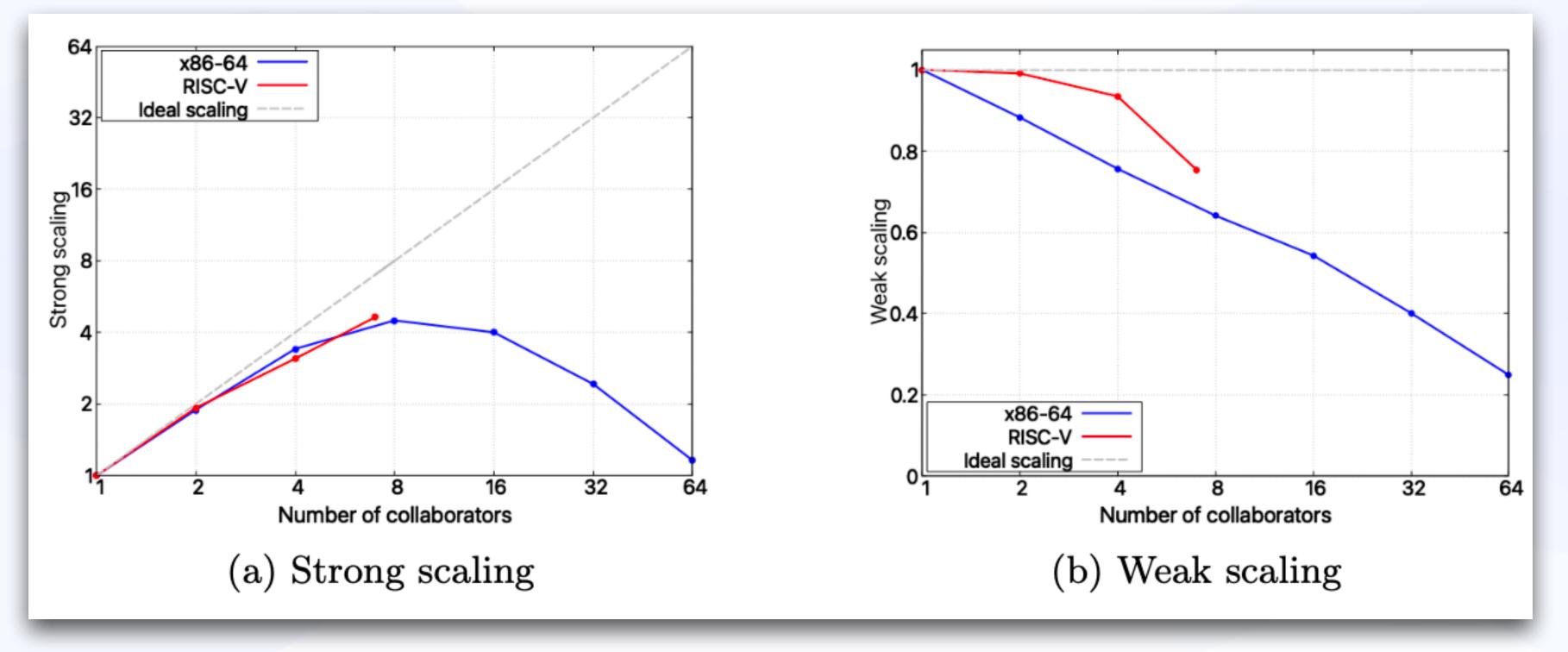


VISUALIZING SCALING PERFORMANCE



Mittone, G., Fonio, S. (2023). "Benchmarking Federated Learning Scalability". In Proceedings of the 2nd Italian Conference on Big Data and Data Science (ITADATA 2023). CEUR.

OPENFL SCALABILITY IS STILL LACKING



MITTONE G. - ITADATA 23 - SEP 12, 23 - NAPLES, IT

X86-64:

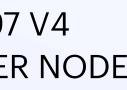
TWO 18-CORE INTEL® XEON E5-2697 V4 @2.30 GHZ AND 126 GB OF RAM PER NODE AND 100GB/S INTEL® OMNIPATH

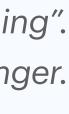
RISC-V:

U740 SOC FROM SIFIVE INTEGRATING FOUR U74 RV64GCB CORES @ 1.2 GHZ, 16GB RAM AND A 1 GB/S INTERCONNECTION NETWORK

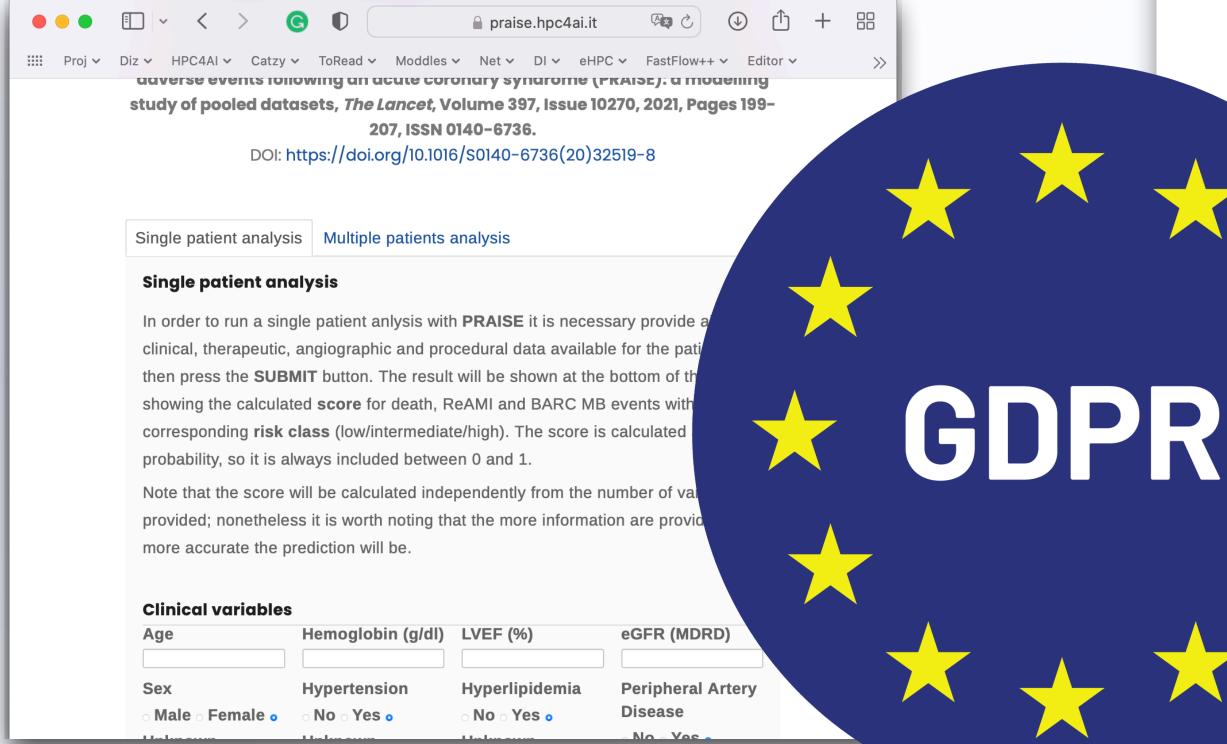
DATASET: FORESTCOVER

Mittone, G., Riviera, W., Colonnelli, I., Birke, R., Aldinucci, M. (2023). "Model-Agnostic Federated Learning". Euro-Par 2023: Parallel Processing. Euro-Par 2023. Lecture Notes in Computer Science, vol 14100. Springer.





MACHINE LEARNING... AND PRIVACY THE LANCET G (\downarrow) رآ۲ (A) 🔒 praise.hpc4ai.it



D'Ascenzo, F., De Filippo, O., Gallone, G., Mittone, G., et al. (2021). "Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): a modelling study of pooled datasets". The Lancet, 397(10270), 199-207.

Articles

۵

Machine learning-based prediction of adverse events wing an acute coronary syndrome (PRAISE): a modelling of pooled datasets

of current prediction tools for ischaemic and bleeding events after an acute coronary syndrome Lancet 2021; 397: 199-207 t for individualised patient management strategies. We developed a machine learning-based predict all-cause death, recurrent acute myocardial infarction, and major bleeding after ACS.

e learning models for the prediction of 1-year post-discharge all-cause death, myocardial ding (defined as Bleeding Academic Research Consortium type 3 or 5) were trained on a ients with ACS (split into a training cohort [80%] and internal validation cohort [20%]) RENAMI registries, which included patients across several continents. 25 clinical features harge were used to inform the models. The best-performing model for each study outcome tested in an external validation cohort of 3444 patients with ACS pooled from a randomised e prospective registries. Model performance was assessed according to a range of learning ProfGM De Ferrari) and under the receiver operating characteristic curve (AUC).

SE score showed an AUC of 0.82 (95% CI 0.78-0.85) in the internal validation cohort and in the external validation cohort for 1-year all-cause death; an AUC of 0.74 (0.70-0.78) in the Department of Cardiology, on cohort and 0.81 (0.76-0.85) in the external validation cohort for 1-year myocardial infarction; and 0 (0.66-0.75) in the internal validation cohort and 0.86 (0.82-0.89) in the external validation cohort ajor bleeding.

pretation A machine learning-based approach for the identification of predictors of events after an ACS is feasible and effective. The PRAISE score showed accurate discriminative capabilities for the prediction of all-cause death, myocardial infarction, and major bleeding, and might be useful to guide clinical decision making.

Funding None.

Copyright © 2021 Elsevier Ltd. All rights reserved.

Introduction

Patients with acute coronary syndrome (ACS) are at high risk for ischaemic and bleeding events, with both being drivers of adverse prognosis.¹ Careful evaluation of these risks plays a fundamental role in the clinical management of each patient, with important implications regarding the choice of optimal medical therapy for secondary prevention.²⁻⁶

to estimate ischaemic and bleeding risks following an effectiveness of this approach has been shown in several

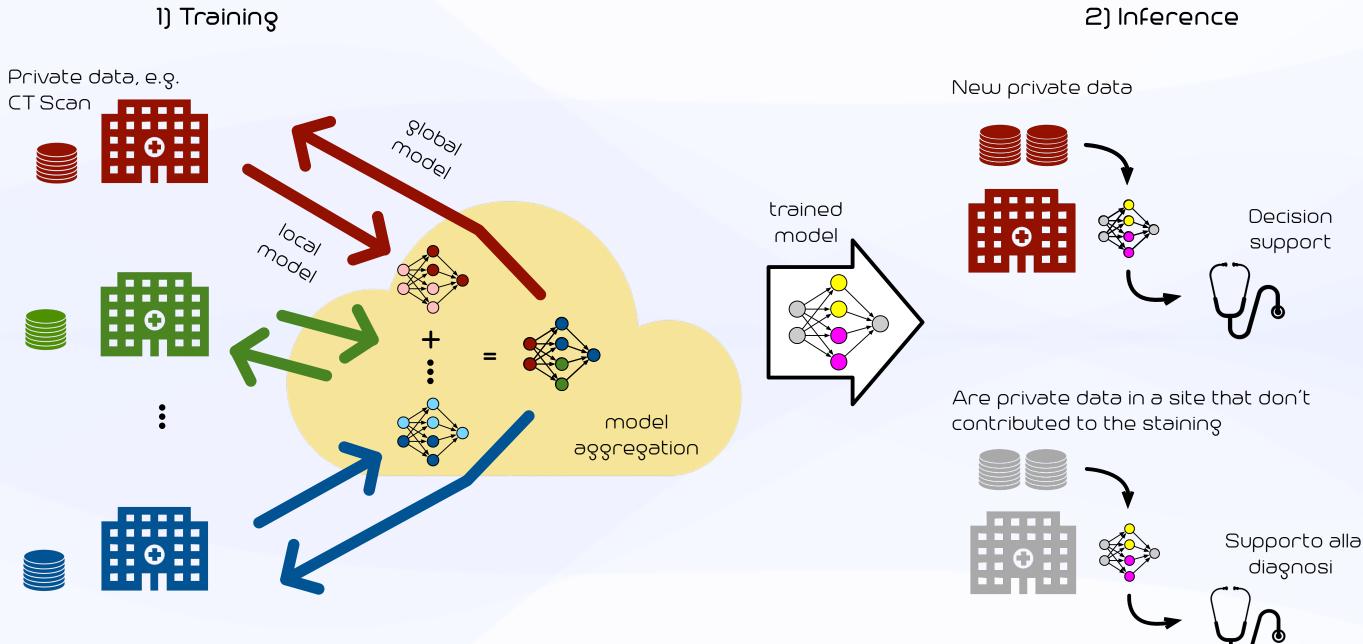
related to their derivation from unselected percutaneous coronary intervention populations encompassing patients with stable presentation. Moreover, machine learning SG Bosco Hospital, Turin, Italy methods might be able to overcome some of the limitations of current analytical approaches to risk prediction by applying computer algorithms to large datasets with numerous, multidimensional variables, capturing highdimensional, non-linear relationships among clinical To this aim, several predictive tools have been developed features to make data-driven outcome predictions.¹⁴ The

See **Comment** page 172 Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della Scienza, Turin, Italy (F D'Ascenzo MD,

O De Filippo MD, G Gallone MD, Prof G M De Ferrari MD); Cardiology, Department of Medical Sciences (F D'Ascenzo O De Filippo, G Gallone, Department of Computer Science (G Mittone MSc, Prof M Aldinucci PhD), University of Turin, Turin, Italy University Hospital Álvaro Cunqueiro, Vigo, Spain (S Raposeiras-Roubin MD, E Abu-Assi MD); Cardiology Department, University Hospital of Wales, Cardiff, UK (T Kinnaird MD); Department of Cardiology, University Hospital de Bellvitge, Barcelona, Spain (A Ariza-Solé MD); Kerckhoff Heart and Thorax Center, Frankfurt, Germany (Prof (Liebetrau MD) Department of Cardiology, University Hospital Virgen Arrtixaca, Murcia, Spain (S Manzano-Fernández MD): Department of Cardiology, (M lannaccone MD); University of Amsterdam, Academic Medical Center, Amsterdam, Netherlands (J P Simao Henriques MD

Catheterization Laborztory, Maggiore della Carità Hospital, Novara, Italy (Prof G Patti MD);

VISUALIZING FEDERATED LEARNING



Cross-device: many unreliable clients (mobile or IoT devices) Cross-silo: a few reliable clients (companies and/or data centers)

> McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017, April). "Communication-efficient learning of deep networks from decentralized data". In Artificial intelligence and statistics (pp. 1273-1282). PMLR.

MITTONE G. - ITADATA 23 - SEP 12, 23 - NAPLES, IT

Algorithm 1 FederatedAveraging. The K clients are indexed by k; B is the local minibatch size, E is the number of local epochs, and η is the learning rate.

Server executes:

initialize w_0 for each round $t = 1, 2, \ldots$ do $m \leftarrow \max(C \cdot K, 1)$ $S_t \leftarrow (\text{random set of } m \text{ clients})$ for each client $k \in S_t$ in parallel do $w_{t+1}^k \leftarrow \text{ClientUpdate}(k, w_t)$ $w_{t+1} \leftarrow \sum_{k=1}^{K} \frac{n_k}{n} w_{t+1}^k$

ClientUpdate(k, w): // Run on client k $\mathcal{B} \leftarrow (\text{split } \mathcal{P}_k \text{ into batches of size } B)$ for each local epoch i from 1 to E do for batch $b \in \mathcal{B}$ do $w \leftarrow w - \eta \nabla \ell(w; b)$ return w to server

HPC4AI - EPITO

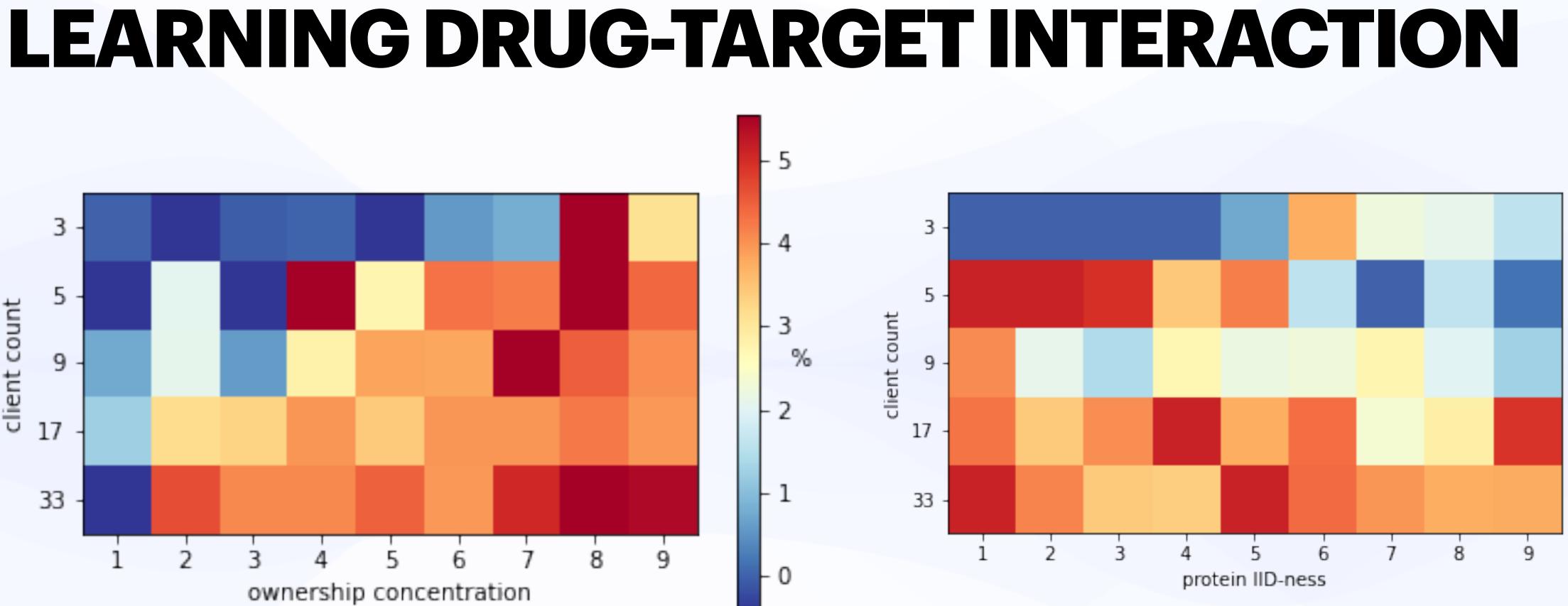
- 2 **RISC-V** (RV64) compute cluster U740 SoC lacksquarefrom SiFive with four U74 RV64GCB application cores, 1.2 GHz and 16GB of DDR4, 1 TB node-local NVME storage
- 4 Intel 2 sockets Xeon Gold 6230 CPU (40threads@2.10GHz), 1536GB RAM, and 2 x NVidia V100 GPU
- 4 NVidia/ARM-dev kits, each including 1 socket \bullet Ampere-Altra Q80-30 (80-core@3GHz), 512GB RAM, 2 x NVidia BlueField-2 DPU, and 2 x NVidia A100 GPU.

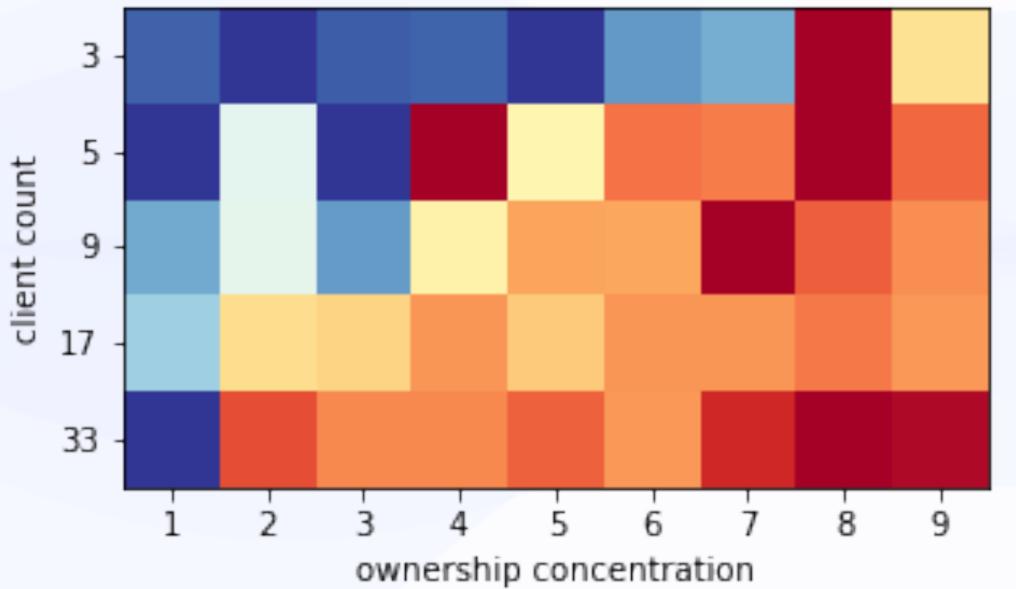
RISC-V® **RISC-V:** The Free and Open **RISC Instruction Set Architecture**

MONTE CIMONE

• 8-node **RISC-V** 4-core@1.2GHz (U740 Sifive SoC) HPC compute cluster integrating processors, main memory, non-volatile storage, and interconnect.

31



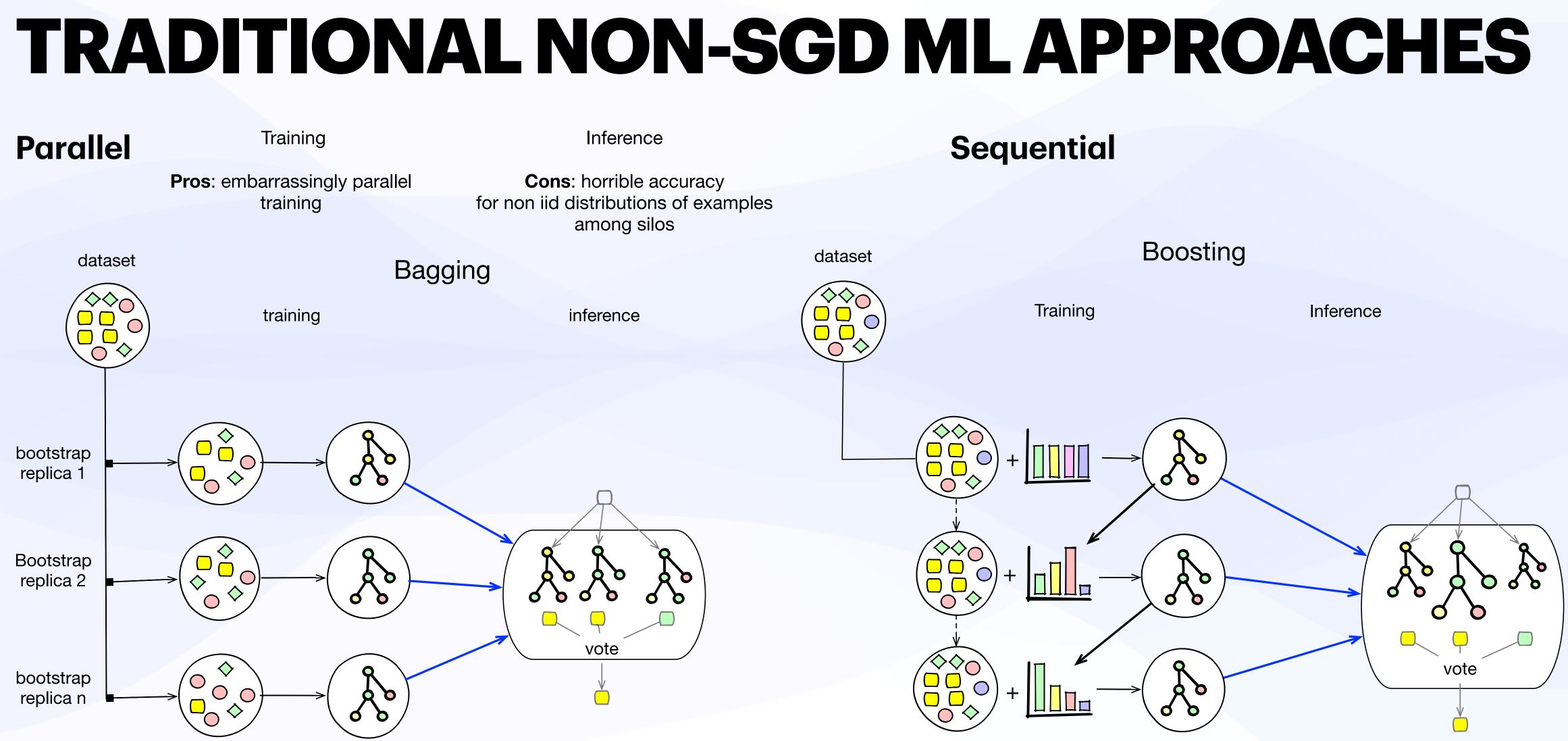


Inbalance in data quantity distribution

Unbalance in protein information distribution

Svoboda, F., Mittone, G., Lane, N. D., Lio', P.. "A Federated Learning Benchmark for Drug-Target Interaction" Accepted at the "Machine Learning in Structural Biology" workshop, NeuriIPS 2022

MITTONE G. - ITADATA 23 - SEP 12, 23 - NAPLES, IT



MITTONE G. - ITADATA 23 - SEP 12, 23 - NAPLES, IT

... AND COMPARABLE TO DNNS

TABLE I: Prediction performance of the FNN model. Values reported are the average \pm stdev of 5 runs. The first run in the strong scaling setting is equivalent to the non-federated case.

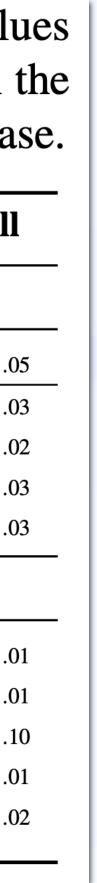
Clients	Accuracy	F1 Score	F2 Score	Precision	Recall
		Strong sca	ling setting		
1	.39 ± .47	.14 ± .08	.22 ± .04	$.17$ \pm .09	.72 ± .39
2	.56 ± .47	.19 ± .09	.26 ± .06	.15 ± .09	.61 ± .36
4	.88 ± .01	.23 ± .01	$.30$ \pm .01	$.17$ \pm .01	$.39 \pm .02$
8	.72 ± .38	$.20$ \pm .06	$.27$ \pm .04	$.16 \pm .06$.48 ± .29
16	.90 ± .01	$.24$ \pm .01	$.29$ \pm .01	$.12$ \pm .01	$.35 \pm .02$
		Weak scal	ling setting		
1	.56 ± .47	.16 ± .07	.22 ± .03	.12 ± .07	.56 ± .40
2	.69 ± .37	$.17$ \pm .05	$.25$ \pm .04	$.12$ \pm .06	$.49 \pm .30$
4	.72 ± .38	$.20$ \pm .07	$.27$ \pm .05	$.15$ \pm .06	$.49$ \pm .29
8	.90 ± .04	$.18$ \pm .10	.24 ± .13	$.13 \pm .08$.30 ± .17
16	.55 ± .46	.17 ± .08	.26 ± .06	.11 ± .06	.63 ± .34

olonnelli, I., D'Ascenzo, F., et al. "Pooling critical datasets with Federated Learning". Accepted at PDP 2023.

G. MITTONE - MDS PHD TALK - 15 FEB 23 - TURIN , IT

TABLE II: Prediction performance of AdaBoost.F. Values reported are the average \pm stdev of 5 runs. The first run in the strong scaling setting is equivalent to the non-federated case.

Clients	Accuracy	F1 Score	F2 Score	Precision	Recall
		Strong sca	ling setting		
1	.95 ± .00	.19 ± .07	.15 ± .06	.35 ± .10	.13 ± .0
2	.95 ± .00	.23 ± .03	.19 ± .03	.36 ± .04	.17 ± .0
4	.94 ± .00	$.19$ \pm .02	$.16 \pm .02$.26 ± .04	$.15 \pm .0$
8	.94 ± .00	$.20$ \pm .04	$.17$ \pm .03	.28 ± .06	$.16 \pm .0$
16	.94 ± .00	$.19$ \pm .03	$.17$ \pm .03	$.25$ \pm .04	$.16 \pm .0$
		Weak scal	ing setting		
1	.95 ± .00	.09 ± .02	.06 ± .01	.33 ± .05	.05 ± .0
2	.95 ± .00	$.10$ \pm .02	.07 ± .01	$.45 \pm .05$	$.05 \pm .0$
4	.95 ± .00	$.15 \pm .04$	$.12$ \pm .04	$.32 \pm .06$.10 ± .1
8	.95 ± .00	$.17 \pm .02$	$.14 \pm .01$	$.28 \pm .04$	$.13 \pm .0$
16	.94 ± .00	.20 ± .03	.18 ± .02	.27 ± .04	$.16 \pm .0$



OVERV

		OFTHE		BTAINE		RESUL
		master + 2 workers		master + 4 workers		master + 7 workers
	Time (s)	Energy/worker (J): Δ (Tot)	Time (s)	Energy/worker (J): Δ (Tot)	Time (s)	Energy/worker (J): Δ (Tot)
Intel ARM RISC-V Intel-ARM	23.84 23.33 674.47 29.50	973 (1992) 133 (483) 269 (2562) NA	23.56 25.66 673.70 29.55	1011 (2069) 146 (531) 269 (2560) NA	24.38 25.86 687.03 33.34	1049 (2146) 148 (535) 274 (2610) NA

(a) MNIST Master-Worker training results: These performance metrics have been taken on a set of 20 federation rounds made up of 5 training epochs each (total 100 epochs); each client was assigned 1/8 of the entire dataset.

	2 peers			4 peers	8 peers		
	Time (s)	Energy/peer (J): Δ (Tot)	Time (s)	Energy/peer (J): Δ (Tot)	Time (s)	Energy/peer (J): Δ (Tot)	
Intel	23.15	2082 (4261)	24.05	2162 (4422)	24,95	2210 (4522)	
ARM	24.39	169 (535)	24.90	173 (546)	26.65	185 (585)	
RISC-V	819.35	409 (3195)	815.55	407 (3180)	933.62	466 (3641)	
Intel-ARM	45.20	ŇÁ	39.13	ŇÁ	50.88	NÁ	

(b) MNIST Peer-to-Peer training results: These performance metrics have been taken on a set of 20 federation rounds made up of 5 training epochs each (total 100 epochs); each client was assigned 1/8 of the entire dataset.

	root $+ 2$ leaves		root + 4 leaves		root + 7 leaves	
	Time (s)	Energy/leaf (J): Δ (Tot)	Time (s)	Energy/leaf (J): Δ (Tot)	Time (s)	Energy/leaf (J): Δ (Tot)
Intel	19,76	1520 (2389)	19,38	1491 (2343)	19,01	1462 (2298)
ARM	37.16	291 (848)	39.88	312 (910)	43.15	338 (985)
RISC-V	1201.51	841 (4926)	1205.77	844 (4943)	1212.77	848 (4972)
Intel-ARM	35.65	NÁ	35.65	NÁ	36.10	NÁ

(c) YOLO Tree-based inference results: These performance metrics have been obtained by assigning each leaf a video with 148 frames.

enting with Emerging ARM and RISC-V Systems for Decentralised Machine Learning",

Submitted at ACM CF 2023.

G. MITTONE - MDS PHD TALK - 15 FEB 23 - TURIN , IT

POWER CONSUMPTION ANALYSIS

INTEL VS ARM VS RISC-V

	Energy/FLOP (CPU only)	Avg CPU power (idle)	TDP (per socket)	1
Intel	5 nJ	44 W	125 W	
ARM	1 nJ	15 W	250 W	
RISC-V	12 nJ	3.4 W	5 W	

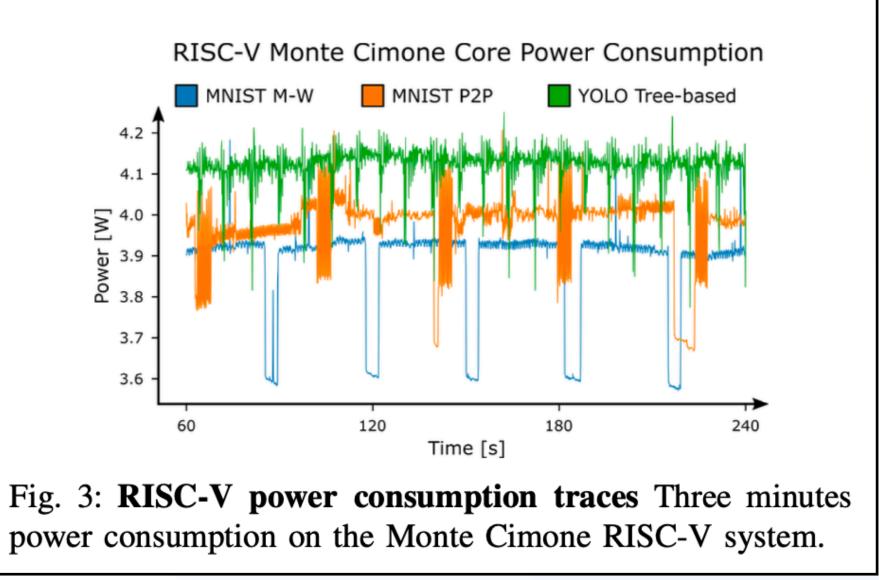
TABLE III: Comparison of the different systems for power employed by CPU and overall systems. The Intel system has two sockets, whereas the others have one socket.

enting with Emerging ARM and RISC-V Systems for Decentralised Machine Learning", Submitted at ACM CF 2023.

G. MITTONE - MDS PHD TALK - 15 FEB 23 - TURIN , IT

Avg system power (idle) 190 W 290 W

5 W



100kHz measurement

